pH Management and Lime Material Selection and Application

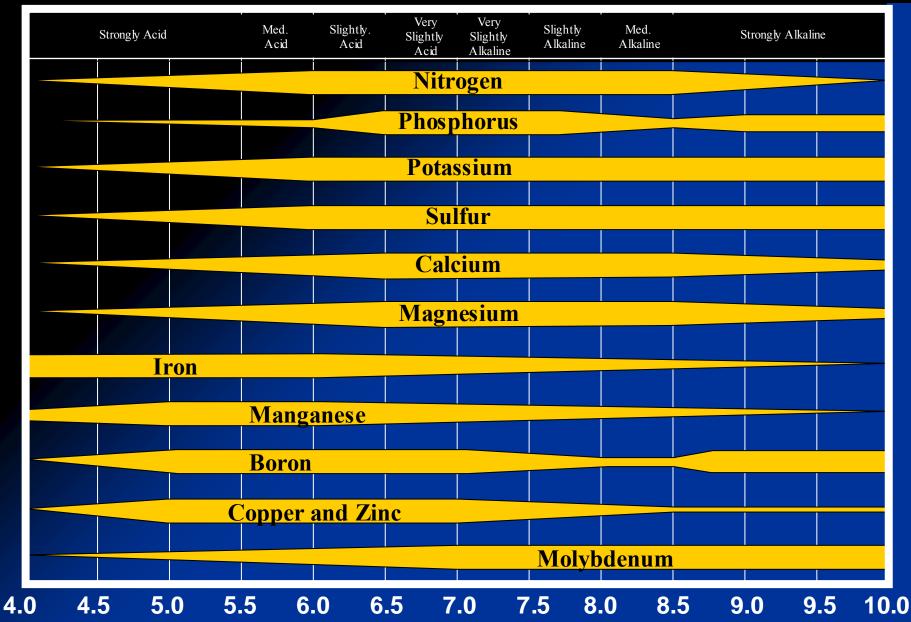
Quirine M. Ketterings

Cornell University Nutrient Management Spear Program http://nmsp.cals.cornell.edu

Acidity and pH

- Acidity = H^+ and AI^{3+}
- pH is a measure of H⁺ activity

0------7AcidNeutralBasic1 unit change in pH = 10 X change in acidity


Favorable pH for Field Crops

Сгор	Desired pH
Buckwheat	6.2
Clover	6.2
Corn	6.2
Grasses and pasture	6.2
Rye	6.2
Millet	6.2
Oats	6.2
Sorghum, sudangrass and sorghum sudan hybrids	6.2
Triticale peas	6.5
Birdsfoot trefoil	6.5
Wheat	6.5
Barley	6.5
Alfalfa	7.0
Soybeans	7.0

Benefits of Liming to Desirable pH

- Prevents the toxic effects of aluminum
- Increases availability of essential nutrients
- Supplies plant needs for Ca or Mg
- Improves soil conditions for microorganisms
- Increases effectiveness of some herbicides
- Improves soil structure

pH and nutrient availability

N Fixation by Alfalfa

Crop N fixation (lbs/acre/yr)

Alfalfa130-220Clover90-130Vetch45-130Bean25-45Soybean45-130

N Fixation by Alfalfa

Factors that reduce N fixation:

- High soil ammonium or nitrate levels
- Low pH
- Poor general soil fertility status (P, S, Mo, Fe)
- Poor physical soil condition

Causes of Soil Acidity

- Leaching of basic cations (humid regions)
 Ca²⁺, Mg²⁺, K⁺ leaving behind Al³⁺
- Crop uptake of basic cations, release of acids
- Decay of plant residues
- Acid rain
- Reaction of nitrogen fertilizer

Acid Formation by N Fertilizer

$2NH_4^+ + 4O_2 \rightarrow 2NO_3^- + 4H^+ + H_2O$

(ammonium) (oxygen) (nitrate) (acid) (water)

Ammonium containing materials are acid forming

Acid Forming Reaction of N Fertilizer

lbs of CaCO₃ needed to neutralize 1 lb of N

Fertilizer Material	lbs
Ammonium Nitrate	3
Urea	3
UAN	3
Anhydrous Ammonia	3
Ammonium Sulfate	6
Manure*	3*

* Effects vary with type of manure

Lime Requirements

pH is a measure of active acidity
 Tells you whether you need lime or not

 Exchangeable acidity is a measure of pH buffer capacity

-Tells you how much lime you need

Lime Requirements

To determine lime requirements we need:

- Initial pH Soil Test
- Target pH
 - For pH 7.0
 - Alfalfa, Soybeans
 - For pH 6.5
 - Barley, Wheat, Trefoil, Peas
 - For pH 6.2
 - Corn, Oats, Grasses, Clover

• Exchange Acidity or Buffer pH - Soil Test

Sampling for pH

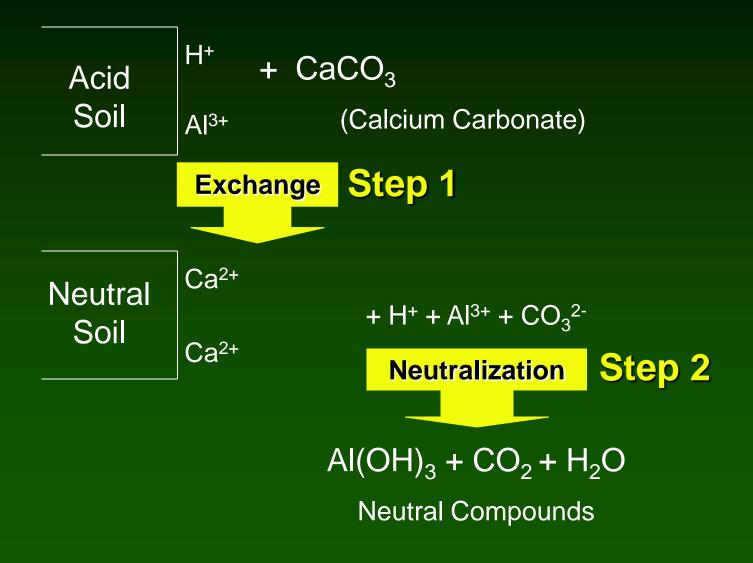
- Conventional tillage:
 - Regular soil depth: 6-8 inches

• Pastures:

- 0-6 inches depth
- Apply when soils are dry to avoid rutting and reduce the risk of compaction.

• No-till or minimum till:

- Two samples: 0-1 inch (surface) and 0-6 inches
 - If surface pH is too low but pH of the 0-6-inch core is ok:
 - Add 1 to 1 $\frac{1}{2}$ tons of lime/acre to raise the surface layer pH.
 - If surface pH is ok but the pH of the 0-6-inch core is too low:
 - Legumes might be no-till seeded with a slightly lower overall
 - pH but lime should be added.
 - If both samples are too low:
 - Do not use no-till methods for the establishment of legumes


Soil pH Test Kit

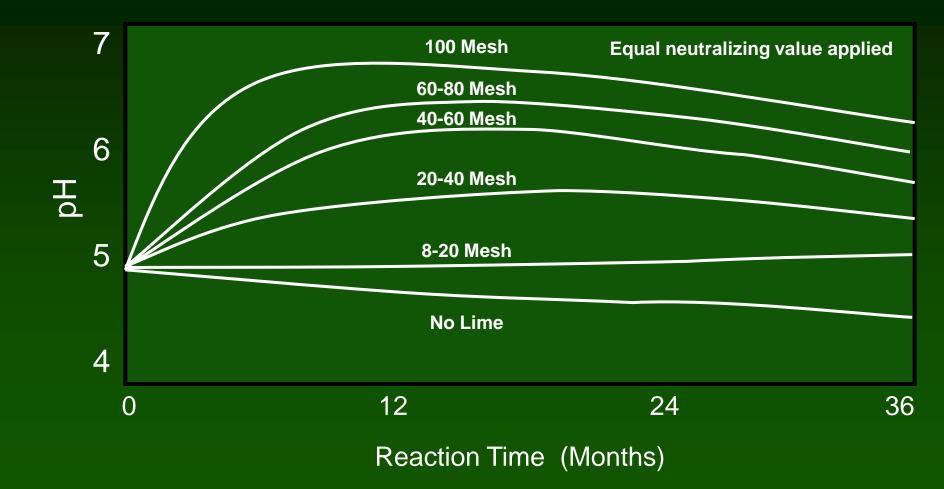
Aglime Materials

- A product whose calcium and magnesium compounds neutralize acidity
 - CaO Calcium oxide
 (Lime, Burned lime, Quick lime)
 - Ca(OH)₂ Calcium hydroxide (Hydrated lime, slaked lime)
 - CaCO₃ Calcium carbonate (Calcitic limestone)
 - CaCO₃, MgCO₃ Calcium and magnesium carbonates (Dolomitic limestone)

Aglime – Reactions in Soil

Aglime Quality

- Neutralizing ability
 - Calcium Carbonate Equivalent (CCE)
 - The neutralizing ability of a liming material compared to pure calcium carbonate


Aglime Quality - CCE Calcium Carbonate Equivalent

•	CaCO ₃	100
•	MgCO ₃	119
•	CaO	179
•	Ca(OH) ₂	136
•	(Ca,Mg)CO ₃	109
•	CaSiO ₃	86

Aglime Quality - Fineness

- Fineness
 - Measured in mesh sizes (number of wires per square inch)
 - Determines speed of reaction
 - Does not alter the Calcium Carbonate Equivalent of a liming material

Aglime Quality - Fineness

Aglime Quality - ENV

- ENV = Effective Neutralizing Value
- ENV = CCE * Fineness factor
- Must be listed on bag and/or delivery slip

Cornell recommendations are for 100% ENV so

Tillage Depth Adjustments

Options:	Tillage depth for equation	Lime requirement adjustment
1-7 inches	6	*1.00
7-9 inches	8	*1.33
9+ inches	10	*1.67

Lime Guidelines - General

- When the lime requirements are greater that 3.0 tons/acre, split the applications by plowing down one-half of the lime and working the remainder into the surface.
- Generally, not more than about 6 tons of lime are recommended to apply with a 4 to 5 year period rotation.
- If more than 6 tons are required, apply 6 tons in a split application in the current rotation and test your soil again in 3 years.

Calcium and Magnesium Tips

- Maintain optimum pH
- Maintain at least minimum sufficiency levels of Mg and K
- Don't worry about ratios unless they are <u>far</u> out of balance
 - Ca:Mg <1
 - Ca Deficiency, soil physical problems
 - Mg:K<1
 - Animal health

pH and Lime Management

- Lime Guidelines for Field Crops in New York
- Agronomy Fact Sheet # 5: Soil pH for Field Crops
- Agronomy Fact Sheet # 6: Lime Recommendations
- Agronomy Fact Sheet # 7: Liming Materials
- Agronomy Fact Sheet # 48: Buffer pH to Derive Lime Guidelines
- Agronomy Fact Sheet # 54: Timing of Lime Applications for Field Crops

The vision of the Cornell University's Nutrient Management Spear Program is to assess current knowledge, identify research and educational needs, conduct applied, field and laboratory-based research, facilitate technology and knowledge transfer, and aid in the on-farm implementation of strategies for field crop nutrient management, including timely application of organic and inorganic nutrient sources to improve profitability and competitiveness of New York State farms while protecting the environment. For more information see our latest (2/15/2011) Program Report.

News Rss

- 12/17/10: New Student Intern Impact Story: Joseph Foster.
- 12/03/10: New value of manure calculator and tutorials added to the: <u>Nutrient Management</u> Curriculum.
- 11/17/10: New whole farm mass nutrient balance software: MNB_1.0.
- 10/28/10: Latest Additions to the Agronomy Fact Sheets Series: #55: Tissue Testing for Corn, Alfalfa and Soybeans, and #56: Winter Triticale Forage.
- 10/2/10: New Story: <u>Manure Expo Highlights</u> (Manure Manager Magazine).
- 9/21/10: Webcast: Novel Approaches to Manure Application in No-Till (Livestock and Poultry Environmental Learning Center).
- 5/16/10: New York Corn Systems Cover Crop Survey: For Farmers with Experience with Cover Crops or For Farmers without Experience with Cover Crops (Print, Complete and Mail).

Featured Links

- Cornell Nutrient Guidelines for Field Crops
 Agronomy Factsheets
- Impact Statements
- Nutrient Management Tutorials
- Nitrogen Management on Dairy Farms

Events

2011 Northeast Region CCA Conference November 29-December 1, 2011. Register by November 5 for an early registration discount.

Photo Gallery

http://nmsp.cals.cornell.edu