Whole Farm Nutrient Mass Balances

In Summary

Nutrient Management Spear Program

http://nmsp.cals.cornell.edu
Department of Animal Science
Cornell University
What is a nutrient mass balance?

- **Balance** = **Imports** – **Exports** (just farm boundaries).
- We only measure what is **reasonably feasible** to measure.

Imports are:
- Feed
- Fertilizer
- Animal
- Bedding, Manure

Exports are:
- Milk
- Animal
- Crop
- Manure, others

Balance can be calculated per tillable acre (nutrient recycle land base) or per cwt of milk (nutrient use efficiency).
Why do we care?

<table>
<thead>
<tr>
<th>Mass balance (Imports < Exports)</th>
<th>Time period</th>
<th>Desirable/Undesirable</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Short term</td>
<td>Desirable</td>
<td>If soil test P and K are high</td>
</tr>
<tr>
<td></td>
<td>Long term</td>
<td>Undesirable</td>
<td>Soil P and K mining → yield losses</td>
</tr>
<tr>
<td>Surplus (Imports > Exports)</td>
<td>Short and Long term</td>
<td>Desirable</td>
<td>Inefficiencies in plant and animal production</td>
</tr>
<tr>
<td>Large Surplus (Imports >>> Exports)</td>
<td>Short and Long term</td>
<td>Undesirable</td>
<td>Nutrient losses to the environ. Soil P and K buildup. Low nutrient use efficiency Maybe economic losses</td>
</tr>
</tbody>
</table>
New York dairy farms operate with a wide range of mass balances per acre and per cwt, regardless of their size.

Distribution of mass balances across New York dairies

<table>
<thead>
<tr>
<th>Distribution Across NY dairies*</th>
<th>NMB (lbs/acre)</th>
<th>NMB (lbs/cwt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N P K</td>
<td>N P K</td>
</tr>
<tr>
<td>Minimum</td>
<td>-35 -7 -45</td>
<td>-1.3 -0.11 -0.73</td>
</tr>
<tr>
<td>Maximum</td>
<td>211 45 132</td>
<td>2.6 0.47 1.69</td>
</tr>
<tr>
<td>"Feasible"</td>
<td>0 to 105 0 to 12 0 to 37</td>
<td>0 to 0.88 0 to 0.11 0 to 0.30</td>
</tr>
</tbody>
</table>

*Based on 102 dairy farms in 2006

- Farms with “feasible” mass balances have:
 - low risk of losing nutrients to the environment (per acre)
 - high nutrient use efficiencies (per cwt).
and have the same NMB per acre (80 lbs/acre), but produces twice more milk, and hence has a higher nutrient use efficiency. Indeed, works in the Optimal Operational Zone.

EXAMPLE 1: ⭐ and ⭐ produce the same amount of milk per acre (6,000 lbs/acre), but ⭐ has lower NMB, and hence a lower risk of losing nutrients to the environment.

EXAMPLE 2: ⭐ and ⭐ have the same NMB per acre (80 lbs/acre), but ⭐ produces twice more milk, and hence has a higher nutrient use efficiency. Indeed, ⭐ works in the Optimal Operational Zone.
What causes excessive NMB?

Mass balance

- **Per acre**
 - High if
 - N > 105 lbs/ac
 - P > 12 lbs/ac
 - K > 37 lbs/ac

- **Total imports**
 - High risk if
 - > 195 lbs N/ac
 - > 30 lbs P/ac
 - > 63 lbs K/ac

- **Feed**
 - High risk if
 - > 1.0 AU/ac
 - Purchased feed (lbs/ac)
 - High risk if
 - > 121 lbs N/ac
 - > 20 lbs P/ac
 - > 38 lbs K/ac
 - Feed use efficiency (%)
 - Can be improved if
 - N < 20%
 - P < 25%
 - K < 11%
 - CP and P (%) in purchased feed
 - Can be reduced if
 - > 27-30% CP
 - > 0.60% P
 - CP and P (%) in all feed
 - Can be reduced if
 - > 17% CP
 - > 0.40% P

- **Fertilizer**
 - Could be reduced if
 - > 39 lbs N/ac
 - > 7 lbs P/ac
 - > 38 lbs K/ac

- **Other indicators**
 - Milk/cow
 - Could be increased if
 - < 20,000 lbs/cow per yr
 - Exports
 - Could be increased if
 - < 20,000 lbs/cow per yr
 - Crops
 - Manure

Animal density (AU/ac)

- High risk if
 - > 1.0 AU/ac

Homegrown feed (%)

- High risk if
 - < 62-65%

Overall crop yields

- Could be increased if
 - < 4.7 tons/ac
Contact

- **Mass balance software and input data sheets**

 → http://nmsp.cals.cornell.edu/projects/massbalance.html

- **Mass balance website**

 → http://nmsp.cals.cornell.edu/NYOnFarmResearchPartnership/MassBalances.html

- **To get more information, please contact**

 → Quirine Ketterings
 qmk2@cornell.edu

 → Karl Czymmek
 kjc12@cornell.edu

 → Sebastian Cela
 sc2575@cornell.edu