# Soil Sample Survey Oswego County

# Samples analyzed by CNAL (2002-2006)



Oswego County (photo credit: Katy Green, CCE of Oswego County).

### Summary compiled by

#### Renuka Rao, Katy Green, Quirine M. Ketterings, and Hettie Krol



Cornell Nutrient Analysis Laboratory http://www.css.cornell.edu/soiltest/newindex.asp & Nutrient Management Spear Program http://nmsp.css.cornell.edu/



# Soil Sample Survey Oswego County

# Samples analyzed by CNAL (2002-2006)

Summary compiled by

#### Renuka Rao

Director Cornell Nutrient Analysis Laboratory Department of Crop and Soil Sciences 804 Bradfield Hall, Cornell University Ithaca NY 14853

#### **Katy Green**

Lake Neatahwanta Project Coordinator Cornell Cooperative Extension of Oswego County

#### Quirine M. Ketterings and Hettie Krol

Nutrient Management Spear Program Department of Crop and Soil Sciences

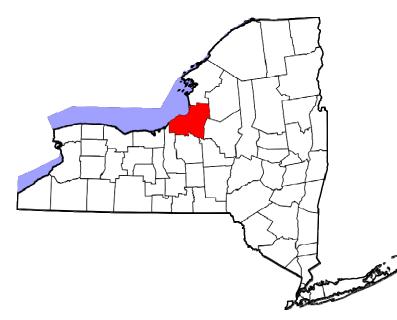
November 26, 2007

Correct Citation:

Rao, R., K. Green, Q.M. Ketterings, and H. Krol (2007). Soil sample survey of Oswego County. Samples analyzed by the Cornell Nutrient Analysis Laboratory (2002-2006). CSS Extension Bulletin E07-28. 33 pages.

# **Table of Content**

| 1. County Introduction       | 1  |
|------------------------------|----|
| 2. General Survey Summary    | 3  |
| 3. Cropping Systems          | 7  |
| 3.1 Homeowner Samples        | 7  |
| 3.2 Commercial Samples       | 8  |
| 4. Soil Types                | 10 |
| 4.1 Homeowner Samples        | 10 |
| 4.2 Commercial Samples       | 11 |
| 5. Organic Matter            | 12 |
| 5.1 Homeowner Samples        | 12 |
| 5.2 Commercial Samples       | 13 |
| 6. pH                        | 14 |
| 6.1 Homeowner Samples        | 14 |
| 6.2 Commercial Samples       | 15 |
| 7. Phosphorus                | 16 |
| 7.1 Homeowner Samples        | 16 |
| 7.2 Commercial Samples       | 17 |
| 8. Potassium                 | 18 |
| 8.1 Homeowner Samples        | 18 |
| 8.2 Commercial Samples       | 20 |
| 9. Magnesium                 | 23 |
| 9.1 Homeowner Samples        | 23 |
| 9.2 Commercial Samples       | 24 |
| 10. Iron                     | 25 |
| 10.1 Homeowner Samples       | 25 |
| 10.2 Commercial Samples      | 26 |
| 11. Manganese                | 27 |
| 11.1 Homeowner Samples       | 27 |
| 11.2 Commercial Samples      | 28 |
| 12. Zinc                     | 29 |
| 12.1 Homeowner Samples       | 29 |
| 12.2 Commercial Samples      | 30 |
| Appendix: Cornell Crop Codes | 31 |




Oswego County (photo credit: Karen Meyers (above) and Katy Green (below), CCE of Oswego County).



#### **1. County Introduction**

Oswego County is located in north central New York. The county is bordered by Lake Ontario and Jefferson County to the North, Lewis and Oneida Counties to the east,



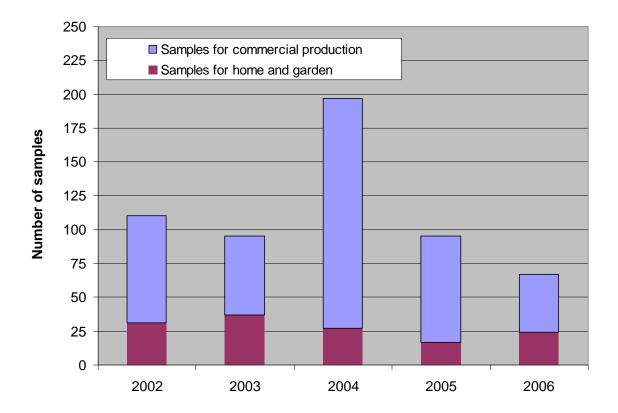
Onondaga and Madison Counties to the south, and Cayuga County to the west. It is divided into two physiographic regions, with the eastern part of the county on the Tug Hill Plateau and the western portion of the county on the Erie-Ontario Plain. The county, particularly the Tug Hill region, is subject to vast amounts of

lake effect snowfall each winter, totaling approximately 180 inches annually. The population of the county is approximately 122,000 residents, the majority of which live in and around the Cities of Oswego and Fulton.

Agriculture and related agri-businesses are the largest industries in Oswego County, contributing \$31.5 million annually to the local economy. According to the New York Agricultural Statistics Service, in 2003 there were 103,100 acres in farmland out of the 610,113 acres that make up Oswego County. The primary agricultural products produced in the county are vegetables (37%), followed by dairy products (34%), nursery and greenhouse (9%), fruits and nuts (4%), hay and other crops (4%), other products account for the final 12% of those produced in the county. The primary vegetables produced in the county include onions and potatoes. Fruits grown in Oswego County consist of a mix of apples, pears, cranberries, strawberries, blueberries, and raspberries among others. Oswego County fruit and vegetable production contributes greatly to agriculture in New York State. Oswego County is the number one producer of cranberries in New York State. It also ranks 3<sup>rd</sup> in onion production, 5<sup>th</sup> in pear production, and 12<sup>th</sup> in apple production in the state.

Oswego County contains one of the largest acreages of wetlands in the state, including approximately 46,500 acres of muckland. Oswego County is unique in that it has several small pockets of muck soil in the western portion of the county that have been drained and are under cultivation for agricultural use. This soil is used for growing a large portion of the vegetables produced in the county, particularly onions.

Dairies have historically been a large part of agriculture in Oswego County, but have declined in recent years. According to the 2007 agricultural district review, there has been a loss of approximately 50% of the dairies in the county since 1999, which is countered by a 40% increase in vegetable production in the county. The agricultural trend at this point seems to be towards small farms growing a variety of produce for local consumers.


Katy Green Lake Neatahwanta Project Coordinator Cornell Cooperative Extension of Oswego County



Oswego County (photo credit: Katy Green, CCE of Oswego County).

### 2. General Survey Summary

This survey summarizes the soil test results from grower (identified as "commercial samples") and homeowner samples from Oswego County submitted to the Cornell Nutrient Analysis Laboratory (CNAL) from 2002 to 2006. The total number of samples analyzed in these years amounted to 564. Of these, 428 samples (76%) were submitted by commercial growers while 43 samples (24%) were submitted by homeowners.



| Homeo       | Homeowners |             | Commercial |           |  |
|-------------|------------|-------------|------------|-----------|--|
| 2002        | 31         | 2002        | 79         | 110       |  |
| 2003        | 37         | 2003        | 58         | 95        |  |
| 2004        | 27         | 2004        | 170        | 197       |  |
| 2005        | 17         | 2005        | 78         | 95        |  |
| <u>2006</u> | <u>24</u>  | <u>2006</u> | <u>43</u>  | <u>67</u> |  |
| Total       | 136        | Total       | 428        | 564       |  |

Homeowner submitted soil samples to the Cornell Nutrient Analysis Laboratory during 2002-2006 primarily to request fertilizer recommendations for home garden vegetable production (33%), athletic fields (21%) and lawns (18%). Commercial growers submitted samples primarily to grow corn silage or grain (27%), birdsfoot trefoil mixes (16%), alfalfa or alfalfa/grass mixes (12%), onions (11%), and grass hay production (6%).

Soils tested for home and garden in Oswego County were classified as belonging to soil management group 2 (19%), group 3 (12%), group 4 (38%), or group 5 (32%). A description of the different management groups is given below.

Soil Management Groups for New York

| 1 | Fine-textured soils developed from clayey lake sediments and medium- to fine-textured soils developed from lake sediments.                                                                                                                                    |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Medium- to fine-textured soils developed from calcareous glacial till and<br>medium-textured to moderately fine-textured soils developed from slightly<br>calcareous glacial till mixed with shale and medium-textured soils developed<br>in recent alluvium. |
| 3 | Moderately coarse textured soil developed from glacial outwash and recent<br>alluvium and medium-textured acid soil developed on glacial till.                                                                                                                |
| 4 | Coarse- to medium-textured soils formed from glacial till or glacial outwash.                                                                                                                                                                                 |
| 5 | Coarse- to very coarse-textured soils formed from gravelly or sandy glacial outwash or glacial lake beach ridges or deltas.                                                                                                                                   |
| 6 | Organic or muck soils with more than 80% organic matter.                                                                                                                                                                                                      |

Of the samples submitted by commercial growers, 50% belonged to soil management group 4. Group 1 soils were represented by less than 1% of the samples. Groups 2, 3, 5, and 6 comprised 3, 5, 29 and 11% of all samples submitted by commercial growers. Worth was the most common soil series (19% of all samples), followed by Alton (14%), the muck soil Carlisle (11%), Williamson (9%) and Winsor (8%).

Organic matter levels, as measured by loss-on-ignition, ranged from less than 1% to almost 60% (muck soil). For homeowner samples, 52% had between 3 and 5% organic matter, 22% tested between 2 and 3% organic matter and 21% had more than 5% organic

matter. Of the samples submitted by commercial growers, 47% contained between 3 and 5% organic matter and 28% had more than 5% organic matter..

Soil pH in water (1:1 soil:water extraction ratio) varied from 4.8 to 8.2 for home and garden samples with 59% testing between pH 6.0 and 7.4 and 26% between pH 5.0 and 5.9. For the commercial samples, the highest pH was 7.5 and 75% tested between 5.5 and 7.0.

Extractable nutrients such as phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), and zinc (Zn) were measured using the Morgan method (Morgan, 1941). This solution contains sodium acetate buffered at pH of 4.8.

Soil test P levels of <1 lb P/acre are classified as very low. Between 1-3 lbs P/acre is low. Medium is between 4-8 lbs P/acre. High testing soils have P levels between 9 and 39 lbs P/acre and anything higher is classified as very high. For homeowners, 20% of the soils tested low for P, 21% tested medium, 35% tested high and 24% tested very high. This meant that 59% tested high or very high in P. For commercial growers, 16% tested very high. In total 32% were low in P, 22% tested medium for P while 30% of the submitted samples were classified as high in soil test P. This means that 46% tested high or very high in P.

Classifications for K depend on soil management group. The fine textured soils (soil management group 1) have a greater K supplying capacity than the coarse textured sandy soils (soil management group 5). Classification for each of the management groups in the above table represent very low, low, medium, high and very high. So for example for soil management group 5 and 6, <60 lbs K/acre means the soil is very low in K, between 60 and 114 lbs K/acre is medium, 115-164 lbs K/acre is medium, 165-269 lbs K/acre is high and >269 lbs K/acre is classified as very high (see Table on page 5).

Potassium classifications for Oswego County soils varied from very low (7% of the homeowner soils and 9% of the commercial growers' soils) to very high (29% of the homeowner soils and 28% of the commercial growers' soils). For homeowners, 19% tested low in K, 18% tested medium, and 27% tested high for potassium. For commercial growers' soils, 22% tested low, 19% tested medium and 19% tested high in K.

| Soil Management | Potassium Soil Test Value (Morgan extraction in lbs K/acre) |        |         |         |           |  |  |
|-----------------|-------------------------------------------------------------|--------|---------|---------|-----------|--|--|
| Group           | Very low                                                    | Low    | Medium  | High    | Very High |  |  |
| 1               | <35                                                         | 35-64  | 65-94   | 95-149  | >149      |  |  |
| 2               | <40                                                         | 40-69  | 70-99   | 100-164 | >164      |  |  |
| 3               | <45                                                         | 45-79  | 80-119  | 120-199 | >199      |  |  |
| 4               | <55                                                         | 55-99  | 100-149 | 150-239 | >239      |  |  |
| 5 and 6         | <60                                                         | 60-114 | 115-164 | 165-269 | >269      |  |  |

Rao, R., K. Green, Q.M. Ketterings, and H. Krol (2007). Oswego Soil Sample Survey (2002-2006). CSS Extension Bulletin E07-28. 33 pages.

Soils test very low for Mg if Morgan extractable Mg is less than 20 lbs Mg/acre. Low testing soils have 20-65 lbs Morgan Mg per acre. Soils with 66-100 lbs Mg/acre test medium for Mg. High testing soils have 101-199 lbs Mg/acre while soils with more than 200 lbs Mg/acre in the Morgan extraction are classified as very high in Mg. Magnesium levels ranged from 6 to more than 3500 lbs Mg/acre. Only 1% of the homeowner and commercial grower soils tested very low for Mg. Most soils tested high or very high for Mg (87% of the homeowner soils and 76% of the soils of the commercial growers).

Soils with more than 50 lbs Morgan extractable Fe per acre test excessive for Fe. Anything lower than 50 lbs Fe/acre is considered normal. Iron levels ranged from 88-94% in the normal range with 6% of the homeowner soils and 12% of the commercial grower soils testing excessive for Fe. Similarly, most soils (94-97%) tested normal for manganese. Soils with more than 100 lbs Morgan extractable Mn per acre are classified as excessive in Mn. Anything less than 100 lbs Mn per acre is classified as normal. Soils with less than 0.5 lb Zn per acre in the Morgan extraction are classified as low in Zn. Medium testing soils have between 0.5 and 1 lb of Morgan extractable Zn per acre. If more than 1 lb of Zn/acre is extracted with the Morgan solution, the soil tests high in Zn. For the homeowner soils, 84% tested high for Zn while 13% tested medium and the remainder were low in Zn. Of the commercial growers' samples, 5% tested low, 18% tested medium while 77% were high in Zn.

In the following sections, the summary tables for each of the soil fertility indicators described above are given. The appendix contains the crop codes used in section 3.

# 3. Cropping Systems

#### 3.1 Homeowner Samples

| 1       |      |      | 1    |      |      |       |     |
|---------|------|------|------|------|------|-------|-----|
|         | 2002 | 2003 | 2004 | 2005 | 2006 | Total | %   |
| ATF     | 9    | 13   | 4    | 2    | 0    | 28    | 21  |
| BLU     | 0    | 0    | 0    | 0    | 2    | 2     | 1   |
| FLA     | 1    | 0    | 0    | 0    | 0    | 1     | 1   |
| GRA     | 0    | 0    | 2    | 0    | 0    | 2     | 1   |
| LAW     | 8    | 6    | 6    | 0    | 5    | 25    | 18  |
| MVG     | 6    | 8    | 9    | 11   | 11   | 45    | 33  |
| OTH     | 3    | 1    | 0    | 0    | 1    | 5     | 4   |
| PER     | 1    | 0    | 1    | 1    | 1    | 4     | 3   |
| РТО     | 0    | 0    | 1    | 0    | 1    | 2     | 1   |
| ROS     | 0    | 0    | 2    | 0    | 0    | 2     | 1   |
| ROU     | 0    | 2    | 0    | 0    | 0    | 2     | 1   |
| RSP     | 0    | 1    | 0    | 0    | 0    | 1     | 1   |
| SAG     | 1    | 0    | 1    | 1    | 3    | 6     | 4   |
| STR     | 0    | 4    | 1    | 0    | 0    | 5     | 4   |
| SUB     | 2    | 0    | 0    | 0    | 0    | 2     | 1   |
| TRF     | 0    | 1    | 0    | 2    | 0    | 3     | 2   |
| Unknown | 0    | 1    | 0    | 0    | 0    | 1     | 1   |
| Total   | 31   | 37   | 27   | 17   | 24   | 136   | 100 |

Crops for which recommendations were requested by homeowners:

Note: See Appendix for Cornell crop codes.

|                   |      |      | 1    |      |      | <b>r</b> |    |
|-------------------|------|------|------|------|------|----------|----|
| Current year crop | 2002 | 2003 | 2004 | 2005 | 2006 | Total    | %  |
| ABE               | 0    | 0    | 1    | 2    | 0    | 3        | 1  |
| AGE/AGT           | 8    | 6    | 21   | 8    | 1    | 44       | 10 |
| ALE/ALT           | 0    | 0    | 4    | 1    | 0    | 5        | 1  |
| APP               | 0    | 2    | 0    | 2    | 0    | 4        | 1  |
| BCE/BCT           | 1    | 0    | 0    | 2    | 0    | 3        | 1  |
| BGT               | 0    | 0    | 50   | 0    | 0    | 50       | 12 |
| BLB               | 1    | 0    | 0    | 9    | 3    | 13       | 3  |
| BRP               | 0    | 0    | 0    | 1    | 0    | 1        | 0  |
| BUK               | 2    | 0    | 0    | 0    | 0    | 2        | 0  |
| BWI               | 1    | 0    | 0    | 0    | 0    | 1        | 0  |
| CBS               | 0    | 0    | 0    | 0    | 2    | 2        | 0  |
| CGE               | 3    | 1    | 1    | 0    | 0    | 5        | 1  |
| CLE               | 1    | 7    | 2    | 0    | 0    | 10       | 2  |
| COG/COS           | 22   | 8    | 43   | 28   | 14   | 115      | 27 |
| CUR               | 0    | 2    | 0    | 0    | 0    | 2        | 0  |
| GIE/GIT           | 1    | 1    | 0    | 0    | 0    | 2        | 0  |
| GPF               | 0    | 0    | 12   | 0    | 0    | 12       | 3  |
| GPV               | 0    | 0    | 0    | 1    | 0    | 1        | 0  |
| GRE/GRT           | 1    | 1    | 4    | 10   | 9    | 25       | 6  |
| LET               | 0    | 0    | 0    | 1    | 0    | 1        | 0  |
| MIX               | 0    | 3    | 0    | 1    | 0    | 4        | 1  |
| OAS               | 3    | 0    | 0    | 0    | 1    | 4        | 1  |
| OAT               | 0    | 3    | 0    | 3    | 4    | 10       | 2  |
| ONP               | 0    | 0    | 0    | 1    | 0    | 1        | 0  |
| ONS               | 14   | 13   | 18   | 0    | 0    | 45       | 11 |
| OTH               | 2    | 1    | 2    | 0    | 0    | 5        | 1  |
| PGE               | 0    | 1    | 1    | 0    | 0    | 2        | 0  |
| PIT               | 0    | 0    | 2    | 0    | 0    | 2        | 0  |
| PLT               | 0    | 0    | 1    | 0    | 0    | 1        | 0  |
| PNT               | 2    | 0    | 1    | 1    | 0    | 4        | 1  |
| РОТ               | 0    | 0    | 1    | 0    | 0    | 1        | 0  |
| PUM               | 1    | 3    | 0    | 1    | 0    | 5        | 1  |
| RSF               | 0    | 1    | 0    | 0    | 0    | 1        | 0  |
| RSS               | 0    | 2    | 0    | 1    | 0    | 3        | 1  |
| RYC               | 3    | 1    | 0    | 0    | 0    | 4        | 1  |
| RYS               | 1    | 0    | 0    | 0    | 0    | 1        | 0  |

Crops for which recommendations were requested in commercial samples:

| Current year crop | 2002 | 2003 | 2004 | 2005 | 2006 | Total | %   |
|-------------------|------|------|------|------|------|-------|-----|
| SOY               | 6    | 0    | 0    | 0    | 0    | 6     | 1   |
| SSH               | 0    | 0    | 0    | 1    | 0    | 1     | 0   |
| STS               | 0    | 0    | 0    | 3    | 0    | 3     | 1   |
| SUN               | 0    | 0    | 0    | 0    | 1    | 1     | 0   |
| SWC               | 1    | 1    | 1    | 0    | 7    | 10    | 2   |
| TOM               | 0    | 0    | 0    | 1    | 0    | 1     | 0   |
| TRE               | 0    | 0    | 2    | 0    | 1    | 3     | 1   |
| TRT               | 5    | 0    | 1    | 0    | 0    | 6     | 1   |
| WHT               | 0    | 1    | 0    | 0    | 0    | 1     | 0   |
| Unknown           | 0    | 0    | 2    | 0    | 0    | 2     | 0   |
| Total             | 79   | 58   | 170  | 78   | 43   | 428   | 100 |

Rao, R., K. Green, Q.M. Ketterings, and H. Krol (2007). Oswego Soil Sample Survey (2002-2006). CSS Extension Bulletin E07-28. 33 pages.

Note: See Appendix for Cornell crop codes.

# 4. Soil Types

## 4.1 Homeowner Samples

|                    | 2002 | 2003 | 2004 | 2005 | 2006 | Total | %   |
|--------------------|------|------|------|------|------|-------|-----|
| SMG 1 (clayey)     | 0    | 0    | 0    | 0    | 0    | 0     | 0   |
| SMG 2 (silty)      | 4    | 2    | 7    | 6    | 7    | 26    | 19  |
| SMG 3 (silt loam)  | 7    | 2    | 2    | 2    | 3    | 16    | 12  |
| SMG 4 (sandy loam) | 12   | 23   | 6    | 4    | 6    | 51    | 38  |
| SMG 5 (sandy)      | 8    | 10   | 12   | 5    | 8    | 43    | 32  |
| SMG 6 (mucky)      | 0    | 0    | 0    | 0    | 0    | 0     | 0   |
| Total              | 31   | 37   | 27   | 17   | 24   | 136   | 100 |

Soil types (soil management groups) for homeowner samples:

| Name       | SMG | 2002 | 2003 | 2004 | 2005 | 2006 | Total | %   |
|------------|-----|------|------|------|------|------|-------|-----|
| Adams      | 5   | 1    | 3    | 0    | 0    | 0    | 4     | 1   |
| Alton      | 5   | 4    | 1    | 14   | 31   | 11   | 61    | 14  |
| Amboy      | 4   | 0    | 1    | 12   | 0    | 0    | 13    | 3   |
| Aurora     | 2   | 0    | 0    | 0    | 1    | 0    | 1     | 0   |
| Brockport  | 1   | 0    | 0    | 0    | 0    | 1    | 1     | 0   |
| Canadaigua | 3   | 1    | 0    | 2    | 0    | 0    | 3     | 1   |
| Carlisle   | 6   | 14   | 13   | 18   | 0    | 0    | 45    | 11  |
| Colonie    | 5   | 0    | 0    | 0    | 0    | 1    | 1     | 0   |
| Colton     | 5   | 3    | 2    | 3    | 0    | 1    | 9     | 2   |
| Deerfield  | 5   | 0    | 2    | 0    | 0    | 0    | 2     | 0   |
| Empeyville | 4   | 1    | 3    | 0    | 0    | 3    | 7     | 2   |
| Fredon     | 4   | 2    | 0    | 0    | 1    | 0    | 3     | 1   |
| Hinckley   | 5   | 0    | 3    | 0    | 2    | 1    | 6     | 1   |
| Ira        | 4   | 8    | 2    | 13   | 6    | 2    | 31    | 7   |
| Madalin    | 1   | 0    | 0    | 1    | 0    | 0    | 1     | 0   |
| Middlebury | 3   | 0    | 0    | 1    | 0    | 0    | 1     | 0   |
| Minoa      | 4   | 2    | 0    | 0    | 0    | 2    | 4     | 1   |
| Naumburg   | 5   | 0    | 1    | 1    | 0    | 1    | 3     | 1   |
| Oakville   | 5   | 0    | 2    | 2    | 1    | 1    | 6     | 1   |
| Ontario    | 2   | 1    | 0    | 1    | 0    | 0    | 2     | 0   |
| Raynham    | 3   | 7    | 3    | 5    | 2    | 0    | 17    | 4   |
| Rhinebeck  | 2   | 3    | 5    | 2    | 1    | 0    | 11    | 3   |
| Scriba     | 4   | 3    | 1    | 7    | 5    | 2    | 18    | 4   |
| Sodus      | 4   | 3    | 0    | 9    | 1    | 0    | 13    | 3   |
| Swanton    | 4   | 0    | 0    | 0    | 0    | 2    | 2     | 0   |
| Venango    | 3   | 1    | 0    | 0    | 0    | 0    | 1     | 0   |
| Westbury   | 4   | 0    | 0    | 2    | 0    | 0    | 2     | 0   |
| Williamson | 4   | 16   | 2    | 14   | 7    | 1    | 40    | 9   |
| Windsor    | 5   | 3    | 9    | 2    | 16   | 4    | 34    | 8   |
| Worth      | 4   | 6    | 1    | 59   | 4    | 10   | 80    | 19  |
| Unknown    | -   | 0    | 4    | 2    | 0    | 0    | 6     | 1   |
| Total      | -   | 79   | 58   | 170  | 78   | 43   | 428   | 100 |

Soil series for commercial samples:

# 5. Organic Matter

#### 5.1 Homeowner Samples

Organic matter (loss-on-ignition method) in homeowner samples (number):

|       | <1 | 1.0-<br>1.9 | 2.0-<br>2.9 | 3.0-<br>3.9 | 4.0-<br>4.9 | 5.0-<br>5.9 | 6.0-<br>6.9 | >6.9 | Total |
|-------|----|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 1  | 0           | 5           | 8           | 11          | 2           | 2           | 2    | 31    |
| 2003  | 0  | 3           | 14          | 10          | 7           | 1           | 2           | 0    | 37    |
| 2004  | 0  | 0           | 5           | 8           | 7           | 2           | 2           | 3    | 27    |
| 2005  | 0  | 2           | 2           | 4           | 5           | 1           | 1           | 2    | 17    |
| 2006  | 0  | 1           | 4           | 8           | 3           | 3           | 2           | 3    | 24    |
| Total | 1  | 6           | 30          | 38          | 33          | 9           | 9           | 10   | 136   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 0.4  | 1.0  | 2.0  | 1.7  | 1.6  |
| Highest: | 11.0 | 6.2  | 13.0 | 7.7  | 9.8  |
| Mean:    | 4.2  | 3.3  | 4.5  | 4.2  | 4.3  |
| Median:  | 4.0  | 3.3  | 4.0  | 4.0  | 3.9  |

| Organic matter in | 1           | ···· 1 /0/  | - f + - + - 1 |          | f 1 ) .     |
|-------------------|-------------|-------------|---------------|----------|-------------|
| Urganic matter in | nomeowner   | samples i % | OT TOTAL      | numper o | t samples i |
| Organic matter m  | Inome where | sumpres (70 | or ioiai      | number o | i sampies.  |
|                   |             |             |               |          |             |

|       | <1 | 1.0-<br>1.9 | 2.0-<br>2.9 | 3.0-<br>3.9 | 4.0-<br>4.9 | 5.0-<br>5.9 | 6.0-<br>6.9 | >6.9 | Total |
|-------|----|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 3  | 0           | 16          | 26          | 35          | 6           | 6           | 6    | 100   |
| 2003  | 0  | 8           | 38          | 27          | 19          | 3           | 5           | 0    | 100   |
| 2004  | 0  | 0           | 19          | 30          | 26          | 7           | 7           | 11   | 100   |
| 2005  | 0  | 12          | 12          | 24          | 29          | 6           | 6           | 12   | 100   |
| 2006  | 0  | 4           | 17          | 33          | 13          | 13          | 8           | 13   | 100   |
| Total | 1  | 4           | 22          | 28          | 24          | 7           | 7           | 7    | 100   |

|       | <1 | 1.0-<br>1.9 | 2.0-<br>2.9 | 3.0-<br>3.9 | 4.0-<br>4.9 | 5.0-<br>5.9 | 6.0-<br>6.9 | >6.9 | Total |
|-------|----|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0  | 8           | 23          | 22          | 8           | 3           | 0           | 15   | 79    |
| 2003  | 0  | 3           | 13          | 13          | 7           | 1           | 3           | 18   | 58    |
| 2004  | 0  | 5           | 22          | 57          | 38          | 15          | 7           | 26   | 170   |
| 2005  | 7  | 4           | 12          | 9           | 22          | 21          | 3           | 0    | 78    |
| 2006  | 0  | 2           | 9           | 13          | 11          | 6           | 1           | 1    | 43    |
| Total | 7  | 22          | 79          | 114         | 86          | 46          | 14          | 60   | 428   |

Organic matter (loss-on-ignition method) in commercial samples (number):

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 1.3  | 1.4  | 2.3  | 0.1  | 1.7  |
| Highest: | 58.7 | 55.1 | 58.1 | 6.6  | 7.6  |
| Mean:    | 12.1 | 13.6 | 9.2  | 3.9  | 3.8  |
| Median:  | 3.2  | 4.0  | 4.0  | 4.3  | 3.6  |

#### Organic matter in commercial samples (% of total number of samples):

|       | <1 | 1.0-<br>1.9 | 2.0-<br>2.9 | 3.0-<br>3.9 | 4.0-<br>4.9 | 5.0-<br>5.9 | 6.0-<br>6.9 | >6.9 | Total |
|-------|----|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0  | 10          | 29          | 28          | 10          | 4           | 0           | 19   | 100   |
| 2003  | 0  | 5           | 22          | 22          | 12          | 2           | 5           | 31   | 100   |
| 2004  | 0  | 3           | 13          | 34          | 22          | 9           | 4           | 15   | 100   |
| 2005  | 9  | 5           | 15          | 12          | 28          | 27          | 4           | 0    | 100   |
| 2006  | 0  | 5           | 21          | 30          | 26          | 14          | 2           | 2    | 100   |
| Total | 2  | 5           | 18          | 27          | 20          | 11          | 3           | 14   | 100   |

# 6. pH

## 6.1 Homeowner Samples

|       | <4.5 | 4.5-<br>4.9 | 5.0-<br>5.4 | 5.5-<br>5.9 | 6.0-<br>6.4 | 6.5-<br>6.9 | 7.0-<br>7.4 | 7.5-<br>7.9 | 8.0-<br>8.4 | >8.4 | Total |
|-------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0    | 0           | 0           | 4           | 4           | 5           | 10          | 4           | 4           | 0    | 31    |
| 2003  | 0    | 1           | 6           | 9           | 5           | 1           | 8           | 7           | 0           | 0    | 37    |
| 2004  | 0    | 0           | 4           | 5           | 6           | 3           | 7           | 2           | 0           | 0    | 27    |
| 2005  | 0    | 0           | 0           | 4           | 0           | 7           | 6           | 0           | 0           | 0    | 17    |
| 2006  | 0    | 0           | 1           | 3           | 4           | 12          | 3           | 1           | 0           | 0    | 24    |
| Total | 0    | 1           | 11          | 25          | 19          | 28          | 34          | 14          | 4           | 0    | 136   |

pH of homeowner samples (numbers):

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 5.7  | 4.8  | 5.1  | 5.6  | 5.3  |
| Highest: | 8.2  | 7.9  | 7.8  | 7.4  | 7.5  |
| Mean:    | -    | -    | -    | -    | -    |
| Median:  | 7.2  | 6.2  | 6.4  | 6.9  | 6.6  |

pH of homeowner of samples (% of total number of samples):

|       | <4.5 | 4.5-<br>4.9 | 5.0-<br>5.4 | 5.5-<br>5.9 | 6.0-<br>6.4 | 6.5-<br>6.9 | 7.0-<br>7.4 | 7.5-<br>7.9 | 8.0-<br>8.4 | >8.4 | Total |
|-------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0    | 0           | 0           | 13          | 13          | 16          | 32          | 13          | 13          | 0    | 100   |
| 2003  | 0    | 3           | 16          | 24          | 14          | 3           | 22          | 19          | 0           | 0    | 100   |
| 2004  | 0    | 0           | 15          | 19          | 22          | 11          | 26          | 7           | 0           | 0    | 100   |
| 2005  | 0    | 0           | 0           | 24          | 0           | 41          | 35          | 0           | 0           | 0    | 100   |
| 2006  | 0    | 0           | 4           | 13          | 17          | 50          | 13          | 4           | 0           | 0    | 100   |
| Total | 0    | 1           | 8           | 18          | 14          | 21          | 25          | 10          | 3           | 0    | 100   |

|       | <4.5 | 4.5-<br>4.9 | 5.0-<br>5.4 | 5.5-<br>5.9 | 6.0-<br>6.4 | 6.5-<br>6.9 | 7.0-<br>7.4 | 7.5-<br>7.9 | 8.0-<br>8.4 | >8.4 | Total |
|-------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0    | 3           | 20          | 23          | 21          | 10          | 2           | 0           | 0           | 0    | 79    |
| 2003  | 1    | 3           | 12          | 16          | 13          | 7           | 5           | 1           | 0           | 0    | 58    |
| 2004  | 0    | 3           | 31          | 45          | 61          | 26          | 4           | 0           | 0           | 0    | 170   |
| 2005  | 0    | 1           | 10          | 21          | 26          | 17          | 2           | 1           | 0           | 0    | 78    |
| 2006  | 0    | 2           | 4           | 14          | 12          | 10          | 1           | 0           | 0           | 0    | 43    |
| Total | 1    | 12          | 77          | 119         | 133         | 70          | 14          | 2           | 0           | 0    | 428   |

pH of commercial samples (number):

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 4.8  | 4.4  | 4.9  | 4.8  | 4.7  |
| Highest: | 7.3  | 7.5  | 7.3  | 7.5  | 7.3  |
| Mean:    | -    | -    | -    | -    | -    |
| Median:  | 5.9  | 5.9  | 6.0  | 6.1  | 6.0  |

pH of commercial samples (% of total number of samples):

|       | <4.5 | 4.5-<br>4.9 | 5.0-<br>5.4 | 5.5-<br>5.9 | 6.0-<br>6.4 | 6.5-<br>6.9 | 7.0-<br>7.4 | 7.5-<br>7.9 | 8.0-<br>8.4 | >8.4 | Total |
|-------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------|
| 2002  | 0    | 4           | 25          | 29          | 27          | 13          | 3           | 0           | 0           | 0    | 100   |
| 2003  | 2    | 5           | 21          | 28          | 22          | 12          | 9           | 2           | 0           | 0    | 100   |
| 2004  | 0    | 2           | 18          | 26          | 36          | 15          | 2           | 0           | 0           | 0    | 100   |
| 2005  | 0    | 1           | 13          | 27          | 33          | 22          | 3           | 1           | 0           | 0    | 100   |
| 2006  | 0    | 5           | 9           | 33          | 28          | 23          | 2           | 0           | 0           | 0    | 100   |
| Total | 0    | 3           | 18          | 28          | 31          | 16          | 3           | 00          | 0           | 0    | 100   |

# 7. Phosphorus

#### 7.1 Homeowner Samples

|       | <1 | 1-3 | 4-8 | 9-39 | 40-60 | 61-80 | 81-<br>100 | 101-<br>150 | 151-<br>200 | >200 | Total |
|-------|----|-----|-----|------|-------|-------|------------|-------------|-------------|------|-------|
|       | VL | L   | М   | Н    | VH    | VH    | VH         | VH          | VH          | VH   |       |
| 2002  | 0  | 6   | 10  | 7    | 4     | 1     | 0          | 0           | 1           | 2    | 31    |
| 2003  | 0  | 11  | 6   | 15   | 2     | 2     | 1          | 0           | 0           | 0    | 37    |
| 2004  | 0  | 4   | 7   | 8    | 3     | 0     | 1          | 1           | 3           | 0    | 27    |
| 2005  | 0  | 3   | 3   | 6    | 0     | 2     | 1          | 1           | 1           | 0    | 17    |
| 2006  | 0  | 3   | 3   | 12   | 2     | 1     | 0          | 0           | 0           | 3    | 24    |
| Total | 0  | 27  | 29  | 48   | 11    | 6     | 3          | 2           | 5           | 5    | 136   |

Phosphorus (lbs/acre Morgan P) in homeowner samples (numbers):

VL = very low, L = low, M = medium, H = high, VH = very high.

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 1    | 1    | 1    | 3    | 1    |
| Highest: | 420  | 84   | 192  | 198  | 475  |
| Mean:    | 46   | 20   | 42   | 41   | 57   |
| Median:  | 8    | 16   | 13   | 16   | 21   |

Phosphorus in homeowner samples (% of total number of samples):

|       | <1 | 1-3 | 4-8 | 9-39 | 40-60 | 61-80 | 81-<br>100 | 101-<br>150 | 151-<br>200 | >200 | Total |
|-------|----|-----|-----|------|-------|-------|------------|-------------|-------------|------|-------|
|       | VL | L   | Μ   | Н    | VH    | VH    | VH         | VH          | VH          | VH   |       |
| 2002  | 0  | 19  | 32  | 23   | 13    | 3     | 0          | 0           | 3           | 6    | 100   |
| 2003  | 0  | 30  | 16  | 41   | 5     | 5     | 3          | 0           | 0           | 0    | 100   |
| 2004  | 0  | 15  | 26  | 30   | 11    | 0     | 4          | 4           | 11          | 0    | 100   |
| 2005  | 0  | 18  | 18  | 35   | 0     | 12    | 6          | 6           | 6           | 0    | 100   |
| 2006  | 0  | 13  | 13  | 50   | 8     | 4     | 0          | 0           | 0           | 13   | 100   |
| Total | 0  | 20  | 21  | 35   | 8     | 4     | 2          | 1           | 4           | 4    | 100   |

VL = very low, L = low, M = medium, H = high, VH = very high.

|       | <1 | 1-3 | 4-8 | 9-39 | 40-60 | 61-80 | 81-<br>100 | 101-<br>150 | 151-<br>200 | >200 | Total |
|-------|----|-----|-----|------|-------|-------|------------|-------------|-------------|------|-------|
|       | VL | L   | Μ   | Н    | VH    | VH    | VH         | VH          | VH          | VH   |       |
| 2002  | 0  | 41  | 11  | 12   | 1     | 1     | 4          | 9           | 0           | 0    | 79    |
| 2003  | 0  | 16  | 14  | 11   | 3     | 1     | 0          | 12          | 1           | 0    | 58    |
| 2004  | 0  | 51  | 41  | 53   | 7     | 0     | 1          | 11          | 5           | 1    | 170   |
| 2005  | 0  | 16  | 19  | 33   | 3     | 1     | 3          | 3           | 0           | 0    | 78    |
| 2006  | 0  | 13  | 8   | 19   | 2     | 0     | 1          | 0           | 0           | 0    | 43    |
| Total | 0  | 137 | 93  | 128  | 16    | 3     | 9          | 35          | 6           | 1    | 428   |

Phosphorus (lbs P/acre Morgan extraction) for commercial samples (number):

VL = very low, L = low, M = medium, H = high, VH = very high.

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 1    | 1    | 1    | 1    | 1    |
| Highest: | 144  | 162  | 223  | 146  | 99   |
| Mean:    | 23   | 37   | 24   | 20   | 14   |
| Median:  | 2    | 8    | 7    | 9    | 9    |

Phosphorus in commercial samples (% of total number of samples):

|       | <1 | 1-3 | 4-8 | 9-39 | 40-60 | 61-80 | 81-<br>100 | 101-<br>150 | 151-<br>200 | >200 | Total |
|-------|----|-----|-----|------|-------|-------|------------|-------------|-------------|------|-------|
|       | VL | L   | Μ   | Н    | VH    | VH    | VH         | VH          | VH          | VH   |       |
| 2002  | 0  | 52  | 14  | 15   | 1     | 1     | 5          | 11          | 0           | 0    | 100   |
| 2003  | 0  | 28  | 24  | 19   | 5     | 2     | 0          | 21          | 2           | 0    | 100   |
| 2004  | 0  | 30  | 24  | 31   | 4     | 0     | 1          | 6           | 3           | 1    | 100   |
| 2005  | 0  | 21  | 24  | 42   | 4     | 1     | 4          | 4           | 0           | 0    | 100   |
| 2006  | 0  | 30  | 19  | 44   | 5     | 0     | 2          | 0           | 0           | 0    | 100   |
| Total | 0  | 32  | 22  | 30   | 4     | 1     | 2          | 8           | 1           | 0    | 100   |

VL = very low, L = low, M = medium, H = high, VH = very high.

# 8. Potassium

#### 8.1 Homeowner Samples

Potassium (lbs K/acre Morgan extraction) in homeowner samples (number):

|                                     |          | Soil M | anagement G | Froup 2 |           |       |  |  |  |  |  |
|-------------------------------------|----------|--------|-------------|---------|-----------|-------|--|--|--|--|--|
|                                     | Very Low | Low    | Medium      | High    | Very High |       |  |  |  |  |  |
|                                     | <40      | 40-69  | 70-99       | 100-164 | >164      | Total |  |  |  |  |  |
| 2002                                | 0        | 1      | 0           | 1       | 2         | 4     |  |  |  |  |  |
| 2003                                | 0        | 1      | 0           | 1       | 0         | 2     |  |  |  |  |  |
| 2004                                | 0        | 0      | 1           | 2       | 4         | 7     |  |  |  |  |  |
| 2005                                | 0        | 0      | 0           | 1       | 5         | 6     |  |  |  |  |  |
| 2006                                | 1        | 0      | 1           | 2       | 3         | 7     |  |  |  |  |  |
| Total (#)                           | 1        | 2      | 2           | 7       | 14        | 26    |  |  |  |  |  |
| Total (%)                           | 4        | 8      | 8           | 27      | 54        | 100   |  |  |  |  |  |
| Soil Management Group 3             |          |        |             |         |           |       |  |  |  |  |  |
| <45 45-79 80-119 120-199 >199 Total |          |        |             |         |           |       |  |  |  |  |  |
| 2002                                | 0        | 0      | 2           | 4       | 1         | 7     |  |  |  |  |  |
| 2003                                | 0        | 0      | 1           | 1       | 0         | 2     |  |  |  |  |  |
| 2004                                | 0        | 0      | 1           | 0       | 1         | 2     |  |  |  |  |  |
| 2005                                | 0        | 1      | 1           | 0       | 0         | 2     |  |  |  |  |  |
| 2006                                | 0        | 0      | 0           | 2       | 1         | 3     |  |  |  |  |  |
| Total (#)                           | 0        | 1      | 5           | 7       | 3         | 16    |  |  |  |  |  |
| Total (%)                           | 0        | 6      | 31          | 44      | 19        | 100   |  |  |  |  |  |
|                                     |          | Soil M | anagement G | broup 4 |           |       |  |  |  |  |  |
|                                     | <55      | 55-99  | 100-149     | 150-239 | >239      | Total |  |  |  |  |  |
| 2002                                | 1        | 4      | 1           | 4       | 2         | 12    |  |  |  |  |  |
| 2003                                | 2        | 6      | 4           | 6       | 5         | 23    |  |  |  |  |  |
| 2004                                | 0        | 0      | 1           | 2       | 3         | 6     |  |  |  |  |  |
| 2005                                | 0        | 1      | 1           | 2       | 0         | 4     |  |  |  |  |  |
| 2006                                | 0        | 1      | 2           | 0       | 3         | 6     |  |  |  |  |  |
| Total (#)                           | 3        | 12     | 9           | 14      | 13        | 51    |  |  |  |  |  |
| Total (%)                           | 6        | 24     | 18          | 27      | 25        | 100   |  |  |  |  |  |
|                                     |          | Soil M | anagement G | broup 5 |           |       |  |  |  |  |  |
|                                     | <60      | 60-114 | 115-164     | 165-269 | >269      | Total |  |  |  |  |  |
| 2002                                | 0        | 2      | 2           | 1       | 3         | 8     |  |  |  |  |  |
| 2003                                | 2        | 4      | 1           | 3       | 0         | 10    |  |  |  |  |  |
| 2004                                | 3        | 0      | 1           | 4       | 4         | 12    |  |  |  |  |  |
| 2005                                | 0        | 3      | 0           | 1       | 1         | 5     |  |  |  |  |  |
| 2006                                | 0        | 2      | 4           | 0       | 2         | 8     |  |  |  |  |  |
| Total (#)                           | 5        | 11     | 8           | 9       | 10        | 43    |  |  |  |  |  |
| Total (%)                           | 12       | 26     | 19          | 21      | 23        | 100   |  |  |  |  |  |

| Summary (#) | Very Low | Low | Medium | High | Very High | Total |
|-------------|----------|-----|--------|------|-----------|-------|
| 2002        | 1        | 7   | 5      | 10   | 8         | 31    |
| 2003        | 4        | 11  | 6      | 11   | 5         | 37    |
| 2004        | 3        | 0   | 4      | 8    | 12        | 27    |
| 2005        | 0        | 5   | 2      | 4    | 6         | 17    |
| 2006        | 1        | 3   | 7      | 4    | 9         | 24    |
| Grand Total | 9        | 26  | 24     | 37   | 40        | 136   |

| Potassium classification | summary for homeowners: |
|--------------------------|-------------------------|
|--------------------------|-------------------------|

| Summary (%) | Very Low | Low | Medium | High | Very High | Total |
|-------------|----------|-----|--------|------|-----------|-------|
| 2002        | 3        | 23  | 16     | 32   | 26        | 100   |
| 2003        | 11       | 30  | 16     | 30   | 14        | 100   |
| 2004        | 11       | 0   | 15     | 30   | 44        | 100   |
| 2005        | 0        | 29  | 12     | 24   | 35        | 100   |
| 2006        | 4        | 13  | 29     | 17   | 38        | 100   |
| Grand Total | 7        | 19  | 18     | 27   | 29        | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 24   | 33   | 18   | 50   | 36   |
| Highest: | 736  | 337  | 618  | 513  | 4104 |
| Mean:    | 204  | 141  | 247  | 188  | 401  |
| Median:  | 153  | 116  | 236  | 185  | 158  |

|                         | Soil Management Group 1 |        |            |         |           |       |  |  |  |  |  |  |
|-------------------------|-------------------------|--------|------------|---------|-----------|-------|--|--|--|--|--|--|
|                         | <35                     | 35-64  | 65-94      | 95-149  | >149      | Total |  |  |  |  |  |  |
|                         | Very Low                | Low    | Medium     | High    | Very High |       |  |  |  |  |  |  |
| 2002                    | 0                       | 0      | 0          | 0       | 0         | 0     |  |  |  |  |  |  |
| 2003                    | 0                       | 0      | 0          | 0       | 0         | 0     |  |  |  |  |  |  |
| 2004                    | 0                       | 0      | 0          | 0       | 1         | 1     |  |  |  |  |  |  |
| 2005                    | 0                       | 0      | 0          | 0       | 0         | 0     |  |  |  |  |  |  |
| 2006                    | 0                       | 0      | 0          | 0       | 1         | 1     |  |  |  |  |  |  |
| Total (#)               | 0                       | 0      | 0          | 0       | 2         | 2     |  |  |  |  |  |  |
| Total (%)               | 0                       | 0      | 0          | 0       | 100       | 100   |  |  |  |  |  |  |
| Soil Management Group 2 |                         |        |            |         |           |       |  |  |  |  |  |  |
|                         | <40                     | 40-69  | 70-99      | 100-164 | >164      | Total |  |  |  |  |  |  |
|                         | Very Low                | Low    | Medium     | High    | Very High |       |  |  |  |  |  |  |
| 2002                    | 0                       | 0      | 1          | 2       | 1         | 4     |  |  |  |  |  |  |
| 2003                    | 0                       | 0      | 0          | 2       | 3         | 5     |  |  |  |  |  |  |
| 2004                    | 0                       | 0      | 0          | 2       | 1         | 3     |  |  |  |  |  |  |
| 2005                    | 0                       | 0      | 0          | 2       | 0         | 2     |  |  |  |  |  |  |
| 2006                    | 0                       | 0      | 0          | 0       | 0         | 0     |  |  |  |  |  |  |
| Total (#)               | 0                       | 0      | 1          | 8       | 5         | 14    |  |  |  |  |  |  |
| Total (%)               | 0                       | 0      | 7          | 57      | 36        | 100   |  |  |  |  |  |  |
|                         |                         | Soil I | Management | Group 3 |           |       |  |  |  |  |  |  |
|                         | <45                     | 45-79  | 80-119     | 120-199 | >199      | Total |  |  |  |  |  |  |
|                         | Very Low                | Low    | Medium     | High    | Very High |       |  |  |  |  |  |  |
| 2002                    | 0                       | 0      | 5          | 3       | 1         | 9     |  |  |  |  |  |  |
| 2003                    | 0                       | 0      | 0          | 3       | 0         | 3     |  |  |  |  |  |  |
| 2004                    | 0                       | 0      | 0          | 1       | 5         | 6     |  |  |  |  |  |  |
| 2005                    | 1                       | 1      | 1          | 1       | 0         | 4     |  |  |  |  |  |  |
| 2006                    | 0                       | 0      | 0          | 8       | 0         | 8     |  |  |  |  |  |  |
| Total (#)               | 1                       | 1      | 6          | 16      | 6         | 30    |  |  |  |  |  |  |
| Total (%)               | 3                       | 3      | 20         | 53      | 20        | 100   |  |  |  |  |  |  |

Potassium (lbs K/acre Morgan extraction) in commercial samples (number):

|                         |          | Soil I | Management | Group 4 |           |       |  |  |  |  |
|-------------------------|----------|--------|------------|---------|-----------|-------|--|--|--|--|
|                         | <55      | 55-99  | 100-149    | 150-239 | >239      | Total |  |  |  |  |
|                         | Very Low | Low    | Medium     | High    | Very High |       |  |  |  |  |
| 2002                    | 10       | 13     | 9          | 4       | 5         | 41    |  |  |  |  |
| 2003                    | 0        | 3      | 0          | 4       | 3         | 10    |  |  |  |  |
| 2004                    | 19       | 36     | 21         | 28      | 12        | 116   |  |  |  |  |
| 2005                    | 0        | 7      | 2          | 6       | 9         | 24    |  |  |  |  |
| 2006                    | 0        | 12     | 4          | 4       | 2         | 22    |  |  |  |  |
| Total (#)               | 29       | 71     | 36         | 46      | 31        | 213   |  |  |  |  |
| Total (%)               | 14       | 33     | 17         | 22      | 15        | 100   |  |  |  |  |
| Soil Management Group 5 |          |        |            |         |           |       |  |  |  |  |
|                         | <60      | 60-114 | 115-164    | 165-269 | >269      | Total |  |  |  |  |
|                         | Very Low | Low    | Medium     | High    | Very High |       |  |  |  |  |
| 2002                    | 3        | 3      | 0          | 0       | 5         | 11    |  |  |  |  |
| 2003                    | 2        | 5      | 11         | 4       | 1         | 23    |  |  |  |  |
| 2004                    | 1        | 2      | 7          | 4       | 8         | 22    |  |  |  |  |
| 2005                    | 1        | 9      | 14         | 10      | 16        | 50    |  |  |  |  |
| 2006                    | 3        | 5      | 7          | 3       | 2         | 20    |  |  |  |  |
| Total (#)               | 10       | 24     | 39         | 21      | 32        | 126   |  |  |  |  |
| Total (%)               | 8        | 19     | 31         | 17      | 25        | 100   |  |  |  |  |
|                         |          | Soil I | Management | Group 6 |           |       |  |  |  |  |
|                         | <60      | 60-114 | 115-164    | 165-269 | >269      | Total |  |  |  |  |
|                         | Very Low | Low    | Medium     | High    | Very High |       |  |  |  |  |
| 2002                    | 0        | 0      | 0          | 0       | 14        | 14    |  |  |  |  |
| 2003                    | 0        | 0      | 0          | 0       | 13        | 13    |  |  |  |  |
| 2004                    | 0        | 0      | 0          | 0       | 18        | 18    |  |  |  |  |
| 2005                    | 0        | 0      | 0          | 0       | 0         | 0     |  |  |  |  |
| 2006                    | 0        | 0      | 0          | 0       | 0         | 0     |  |  |  |  |
| Total (#)               | 0        | 0      | 0          | 0       | 45        | 45    |  |  |  |  |
| Total (%)               | 0        | 0      | 0          | 0       | 100       | 100   |  |  |  |  |

| Summary (#) | Very<br>Low | Low | Medium | High | Very<br>High | Un-<br>known | Total |
|-------------|-------------|-----|--------|------|--------------|--------------|-------|
| 2002        | 13          | 16  | 15     | 9    | 26           | 0            | 79    |
| 2003        | 2           | 8   | 11     | 13   | 20           | 4            | 58    |
| 2004        | 21          | 39  | 28     | 35   | 45           | 2            | 170   |
| 2005        | 1           | 16  | 17     | 19   | 25           | 0            | 78    |
| 2006        | 3           | 17  | 11     | 7    | 5            | 0            | 43    |
| Grand Total | 40          | 96  | 82     | 83   | 121          | 6            | 428   |

| Potassium classification summar | v for com | mercial samples. |
|---------------------------------|-----------|------------------|
|                                 | J         |                  |

| Summary (%) | Very<br>Low | Low | Medium | High | Very<br>High | Un-<br>known | Total |
|-------------|-------------|-----|--------|------|--------------|--------------|-------|
| 2002        | 16          | 20  | 19     | 11   | 33           | 0            | 100   |
| 2003        | 3           | 14  | 19     | 22   | 34           | 7            | 100   |
| 2004        | 12          | 23  | 16     | 21   | 26           | 1            | 100   |
| 2005        | 1           | 21  | 22     | 24   | 32           | 0            | 100   |
| 2006        | 7           | 40  | 26     | 16   | 12           | 0            | 100   |
| Grand Total | 9           | 22  | 19     | 19   | 28           | 1            | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 10   | 32   | 15   | 32   | 52   |
| Highest: | 3544 | 864  | 701  | 561  | 535  |
| Mean:    | 265  | 258  | 189  | 211  | 154  |
| Median:  | 118  | 159  | 142  | 185  | 123  |

# 9. Magnesium

#### 9.1 Homeowner Samples

|       | <20      | 20-65 | 66-100 | 101-199 | >199      | Total |
|-------|----------|-------|--------|---------|-----------|-------|
|       | Very Low | Low   | Medium | High    | Very High |       |
| 2002  | 0        | 1     | 0      | 7       | 23        | 31    |
| 2003  | 1        | 2     | 7      | 10      | 17        | 37    |
| 2004  | 1        | 1     | 2      | 5       | 18        | 27    |
| 2005  | 0        | 1     | 0      | 3       | 13        | 17    |
| 2006  | 0        | 2     | 0      | 9       | 13        | 24    |
| Total | 2        | 7     | 9      | 34      | 84        | 136   |

Magnesium (lbs Mg/acre Morgan extraction) in homeowner samples (numbers):

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 56   | 16   | 12   | 46   | 27   |
| Highest: | 1004 | 673  | 849  | 496  | 1290 |
| Mean:    | 368  | 219  | 303  | 271  | 306  |
| Median:  | 297  | 197  | 270  | 273  | 217  |

Magnesium in homeowner samples (% of total number of samples):

|       | <20      | 20-65 | 66-100 | 101-199 | >199      | Total |
|-------|----------|-------|--------|---------|-----------|-------|
|       | Very Low | Low   | Medium | High    | Very High |       |
| 2002  | 0        | 3     | 0      | 23      | 74        | 100   |
| 2003  | 3        | 5     | 19     | 27      | 46        | 100   |
| 2004  | 4        | 4     | 7      | 19      | 67        | 100   |
| 2005  | 0        | 6     | 0      | 18      | 76        | 100   |
| 2006  | 0        | 8     | 0      | 38      | 54        | 100   |
| Total | 1        | 5     | 7      | 25      | 62        | 100   |

|       | <20      | 20-65 | 66-100 | 101-199 | >199      | Total |
|-------|----------|-------|--------|---------|-----------|-------|
|       | Very Low | Low   | Medium | High    | Very High |       |
| 2002  | 3        | 9     | 12     | 20      | 35        | 79    |
| 2003  | 2        | 7     | 5      | 19      | 25        | 58    |
| 2004  | 1        | 16    | 14     | 46      | 93        | 170   |
| 2005  | 0        | 10    | 9      | 20      | 39        | 78    |
| 2006  | 0        | 6     | 11     | 13      | 13        | 43    |
| Total | 6        | 48    | 51     | 118     | 205       | 428   |

Magnesium (lbs Mg/acre Morgan extraction) in commercial samples (number):

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 6    | 10   | 17   | 21   | 23   |
| Highest: | 2181 | 3685 | 3450 | 597  | 548  |
| Mean:    | 427  | 659  | 448  | 215  | 160  |
| Median:  | 175  | 171  | 226  | 201  | 131  |

| Magnesium in commercial | samples (% of tot | al number of samples): |
|-------------------------|-------------------|------------------------|
|                         | T T T T           |                        |

|       | <20      | 20-65 | 66-100 | 101-199 | >199      | Total |
|-------|----------|-------|--------|---------|-----------|-------|
|       | Very Low | Low   | Medium | High    | Very High |       |
| 2002  | 4        | 11    | 15     | 25      | 44        | 100   |
| 2003  | 3        | 12    | 9      | 33      | 43        | 100   |
| 2004  | 1        | 9     | 8      | 27      | 55        | 100   |
| 2005  | 0        | 13    | 12     | 26      | 50        | 100   |
| 2006  | 0        | 14    | 26     | 30      | 30        | 100   |
| Total | 1        | 11    | 12     | 28      | 48        | 100   |

Total

## 10. Iron

### 10.1 Homeowner Samples

Iron (lbs Fe/acre Morgan extraction) in homeowner samples:

| ,     | Total number of samples: |           |       |        |           |  |
|-------|--------------------------|-----------|-------|--------|-----------|--|
|       | 0-49                     | >49       | Total | 0-49   | >49       |  |
|       | Normal                   | Excessive |       | Normal | Excessive |  |
| 2002  | 30                       | 1         | 31    | 97     | 3         |  |
| 2003  | 34                       | 3         | 37    | 92     | 8         |  |
| 2004  | 27                       | 0         | 27    | 100    | 0         |  |
| 2005  | 14                       | 3         | 17    | 82     | 18        |  |
| 2006  | 23                       | 1         | 24    | 96     | 4         |  |
| Total | 128                      | 8         | 136   | 94     | 6         |  |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 2    | 2    | 4    | 2    | 2    |
| Highest: | 98   | 96   | 36   | 132  | 50   |
| Mean:    | 11   | 21   | 16   | 23   | 13   |
| Median:  | 6    | 11   | 13   | 6    | 8    |

Iron (lbs Fe/acre Morgan extraction) in commercial samples:

| Total number of samples: |        |           |       |  | Percentages: |           |       |
|--------------------------|--------|-----------|-------|--|--------------|-----------|-------|
|                          | 0-49   | >49       | Total |  | 0-49         | >49       | Total |
|                          | Normal | Excessive |       |  | Normal       | Excessive |       |
| 2002                     | 72     | 7         | 79    |  | 91           | 9         | 100   |
| 2003                     | 49     | 9         | 58    |  | 84           | 16        | 100   |
| 2004                     | 140    | 30        | 170   |  | 82           | 18        | 100   |
| 2005                     | 77     | 1         | 78    |  | 99           | 1         | 100   |
| 2006                     | 39     | 4         | 43    |  | 91           | 9         | 100   |
| Total                    | 377    | 51        | 428   |  | 88           | 12        | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 2    | 2    | 2    | 1    | 3    |
| Highest: | 174  | 380  | 364  | 121  | 160  |
| Mean:    | 21   | 30   | 35   | 14   | 23   |
| Median:  | 13   | 14   | 16   | 11   | 11   |

## 11. Manganese

### 11.1 Homeowner Samples

Manganese (lbs Mn/acre Morgan extraction) in homeowner samples:

| Total number of samples: |        |           |       |  | Percentages: |           |       |
|--------------------------|--------|-----------|-------|--|--------------|-----------|-------|
|                          | 0-99   | >99       | Total |  | 0-99         | >99       | Total |
|                          | Normal | Excessive |       |  | Normal       | Excessive |       |
| 2002                     | 29     | 2         | 31    |  | 94           | 6         | 100   |
| 2003                     | 35     | 2         | 37    |  | 95           | 5         | 100   |
| 2004                     | 24     | 3         | 27    |  | 89           | 11        | 100   |
| 2005                     | 16     | 1         | 17    |  | 94           | 6         | 100   |
| 2006                     | 24     | 0         | 24    |  | 100          | 0         | 100   |
| Total                    | 128    | 8         | 136   |  | 94           | 6         | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 10   | 13   | 4    | 13   | 6    |
| Highest: | 298  | 148  | 214  | 118  | 79   |
| Mean:    | 48   | 50   | 46   | 37   | 29   |
| Median:  | 34   | 49   | 35   | 31   | 27   |

Manganese (lbs Mn/acre Morgan extraction) in commercial samples:

| Total number of samples: |        |           |       |  | centages: |           |       |
|--------------------------|--------|-----------|-------|--|-----------|-----------|-------|
|                          | 0-99   | >99       | Total |  | 0-99      | >99       | Total |
|                          | Normal | Excessive |       |  | Normal    | Excessive |       |
| 2002                     | 77     | 2         | 79    |  | 97        | 3         | 100   |
| 2003                     | 54     | 4         | 58    |  | 93        | 7         | 100   |
| 2004                     | 168    | 2         | 170   |  | 99        | 1         | 100   |
| 2005                     | 77     | 1         | 78    |  | 99        | 1         | 100   |
| 2006                     | 41     | 2         | 43    |  | 95        | 5         | 100   |
| Total                    | 417    | 11        | 428   |  | 97        | 3         | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 5    | 4    | 7    | 5    | 13   |
| Highest: | 329  | 158  | 166  | 136  | 514  |
| Mean:    | 37   | 38   | 33   | 36   | 45   |
| Median:  | 26   | 30   | 30   | 29   | 29   |

# 12. Zinc

#### 12.1 Homeowner Samples

Zinc (lbs Zn/acre Morgan extraction) in homeowner samples:

|       | Total number of samples: |        |      |     |  |  |  |  |  |  |
|-------|--------------------------|--------|------|-----|--|--|--|--|--|--|
|       | <0.5 0.5-1.0 >1 Total    |        |      |     |  |  |  |  |  |  |
|       | Low                      | Medium | High |     |  |  |  |  |  |  |
| 2002  | 1                        | 5      | 25   | 31  |  |  |  |  |  |  |
| 2003  | 0                        | 6      | 31   | 37  |  |  |  |  |  |  |
| 2004  | 1                        | 3      | 23   | 27  |  |  |  |  |  |  |
| 2005  | 2                        | 1      | 14   | 17  |  |  |  |  |  |  |
| 2006  | 1 2 21 24                |        |      |     |  |  |  |  |  |  |
| Total | 5                        | 17     | 114  | 136 |  |  |  |  |  |  |

| <0.5 0.5-1.0 | >1 |
|--------------|----|

Percentages:

| < 0.5 | 0.5-1.0 | >1   | Total |
|-------|---------|------|-------|
| Low   | Medium  | Uiah |       |
| Low   |         | High | 100   |
| 3     | 16      | 81   | 100   |
| 0     | 16      | 84   | 100   |
| 4     | 11      | 85   | 100   |
| 12    | 6       | 82   | 100   |
| 4     | 8       | 88   | 100   |
| 4     | 13      | 84   | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 0.3  | 0.6  | 0.4  | 0.4  | 0.2  |
| Highest: | 21.8 | 78.5 | 33.2 | 64.1 | 60.4 |
| Mean:    | 5.0  | 5.9  | 3.5  | 3.3  | 2.7  |
| Median:  | 2.6  | 2.3  | 3.5  | 3.3  | 2.7  |

Zinc (lbs Zn/acre Morgan extraction) in commercial samples:

| Total number of samples: |      |         |      |       | Percentag | es:     |      |       |
|--------------------------|------|---------|------|-------|-----------|---------|------|-------|
|                          | <0.5 | 0.5-1.0 | >1   | Total | <0.5      | 0.5-1.0 | >1   | Total |
|                          | Low  | Medium  | High |       | Low       | Medium  | High |       |
| 2002                     | 5    | 18      | 56   | 79    | 6         | 23      | 71   | 100   |
| 2003                     | 4    | 8       | 46   | 58    | 7         | 14      | 79   | 100   |
| 2004                     | 1    | 30      | 139  | 170   | 1         | 18      | 82   | 100   |
| 2005                     | 0    | 10      | 68   | 78    | 0         | 13      | 87   | 100   |
| 2006                     | 13   | 9       | 21   | 43    | 30        | 21      | 49   | 100   |
| Total                    | 23   | 75      | 330  | 428   | 5         | 18      | 77   | 100   |

|          | 2002 | 2003 | 2004 | 2005 | 2006 |
|----------|------|------|------|------|------|
| Lowest:  | 0.2  | 0.3  | 0.3  | 0.6  | 0.1  |
| Highest: | 65.2 | 21.1 | 63.9 | 22.7 | 26.5 |
| Mean:    | 6.7  | 6.3  | 4.1  | 3.1  | 2.5  |
| Median:  | 1.7  | 3.1  | 2.0  | 1.8  | 0.9  |

# **Appendix: Cornell Crop Codes**

| Crop Code | Crop Description                        |  |
|-----------|-----------------------------------------|--|
| Alfalfa   |                                         |  |
| ABE       | Alfalfa trefoil grass, Establishment    |  |
| ABT       | Alfalfa trefoil grass, Established      |  |
| AGE       | Alfalfa grass, Establishment            |  |
| AGT       | Alfalfa grass, Established              |  |
| ALE       | Alfalfa, Establishment                  |  |
| ALT       | Alfalfa, Established                    |  |
|           | Birdsfoot                               |  |
| BCE       | Birdsfoot trefoil clover, Establishment |  |
| BCT       | Birdsfoot trefoil clover, Established   |  |
| BGE       | Birdsfoot trefoil grass, Establishment  |  |
| BGT       | Birdsfoot trefoil grass, Established    |  |
| BSE       | Birdsfoot trefoil seed, Establishment   |  |
| BST       | Birdsfoot trefoil seed, Established     |  |
| BTE       | Birdsfoot trefoil, Establishment        |  |
| BTT       | Birdsfoot trefoil, Established          |  |
|           | Barley                                  |  |
| BSP       | Spring barley                           |  |
| BSS       | Spring barley with legumes              |  |
| BUK       | Buckwheat                               |  |
| BWI       | Winter barley                           |  |
| BWS       | Winter barley with legumes              |  |
|           | Clover                                  |  |
| CGE       | Clover grass, Establishment             |  |
| CGT       | Clover grass, Established               |  |
| CLE       | Clover, Establishment                   |  |
| CLT       | Clover, Established                     |  |
| CSE       | Clover seed production, Establishment   |  |
| CST       | Clover seed production, Established     |  |
|           |                                         |  |

Crop codes used in the Cornell Nutrient Analysis Laboratory.

| Crop Code | Crop Description                           |
|-----------|--------------------------------------------|
|           | Corn                                       |
| COG       | Corn grain                                 |
| COS       | Corn silage                                |
|           | Grasses, pastures, covercrops              |
| CVE       | Crownvetch, Establishment                  |
| CVT       | Crownvetch, Established                    |
| GIE       | Grasses intensively managed, Establishment |
| GIT       | Grasses intensively managed, Established   |
| GRE       | Grasses, Establishment                     |
| GRT       | Grasses, Established                       |
| PGE       | Pasture, Establishment                     |
| PGT       | Pasture improved grasses, Established      |
| PIE       | Pasture intensively grazed, Establishment  |
| PIT       | Pasture intensively grazed, Established    |
| PLE       | Pasture with legumes, Establishment        |
| PLT       | Pasture with legumes, Established          |
| PNT       | Pasture native grasses                     |
| RYC       | Rye cover crop                             |
| RYS       | Rye seed production                        |
| TRP       | Triticale peas                             |
|           | Small grains                               |
| MIL       | Millet                                     |
| OAS       | Oats seeded with legume                    |
| OAT       | Oats                                       |
| SOF       | Sorghum forage                             |
| SOG       | Sorghum grain                              |
| SOY       | Soybeans                                   |
| SSH       | Sorghum sudan hybrid                       |
| SUD       | Sudangrass                                 |
| WHS       | Wheat with legume                          |
| WHT       | Wheat                                      |
|           | Others                                     |
| ALG       | Azalea                                     |
| APP       | Apples                                     |
| ATF       | Athletic field                             |
|           |                                            |

| Crop Code | Crop Description                     |
|-----------|--------------------------------------|
| BDR/DND   | Beans-dry                            |
| BLU       | Blueberries                          |
| CEM       | Cemetery                             |
| FAR       | Fairway                              |
| FLA       | Flowering annuals                    |
| GRA       | Grapes                               |
| GEN       | Green                                |
| HRB       | Herbs                                |
| IDL       | Idle land                            |
| LAW       | Lawn                                 |
| MIX/MVG   | Mixed vegetables                     |
| PER       | Perennials                           |
| PRK       | Park                                 |
| POT/PTO   | Potatoes                             |
| PUM       | Pumpkins                             |
| ROD       | Roadside                             |
| ROS       | Roses                                |
| RSF       | Raspberries, Fall                    |
| RSP       | Raspberries (homeowners)             |
| RSS       | Raspberries, Summer                  |
| SAG       | Ornamentals adapted to pH 6.0 to 7.5 |
| SQW       | Squash, Winter                       |
| STE       | Strawberries, Ever                   |
| STR       | Strawberries (homeowners)            |
| STS       | Strawberries, Spring                 |
| SUN       | Sunflowers                           |
| SWC       | Sweet corn                           |
| TOM       | Tomatoes                             |
| TRE       | Christmas trees, Establishment       |
| TRF       | Turf                                 |
| TRT       | Christmas trees, Topdressing         |
|           |                                      |