Soil Sample Survey

Wayne Co.

Samples analyzed by CNAL in 1995-2001

In western Wayne County, urban pressure from Rochester competes for farmland. The drumlins make home sites with panoramic views. The glacial till plains between the hills are used for agriculture, but often competing uses such as this golf course replace farm crops. Soil testing is as important for turf management as it is for farming.

Summary compiled by

Quirine M. Ketterings, Hettie Krol, W. Shaw Reid & Nate Herendeen

Nutrient Management Spear Program: http://nmsp.css.cornell.edu/

Soil Sample Survey

Wayne Co.

Samples analyzed by CNAL in 1995-2001

Summary compiled by

Quirine Ketterings and Hettie Krol

Nutrient Management Spear Program
Department of Crop and Soil Sciences
817 Bradfield Hall, Cornell University
Ithaca NY 14853

W. Shaw Reid

Professor Emeritus

Department of Crop and Soil Sciences

Nathan Herendeen

Senior Extension Associate – Field Crops CCE – North West New York Team

March 26, 2004

Correct Citation:

Ketterings, Q.M., H. Krol, W.S. Reid, and N. Herendeen (2004). Soil samples survey of Wayne County. Samples analyzed by the Cornell Nutrient Analysis Laboratory in 1995-2001. CSS Extension Bulletin E04-12. 40 pages.

Table of Content

1. General Survey Summary	4
2. Cropping Systems	7
2.1 Samples for Home and Garden	11
2.2 Samples for Commercial Production	12
3. Soil Types	14
3.1 Samples for Home and Garden	14
3.2 Samples for Commercial Production	15
4. Organic Matter	17
4.1 Samples for Home and Garden	17
4.2 Samples for Commercial Production	18
5. pH	19
5.1 Samples for Home and Garden	19
5.2 Samples for Commercial Production	20
6. Phosphorus	21
6.1 Samples for Home and Garden	21
6.2 Samples for Commercial Production	22
7. Potassium	23
7.1 Samples for Home and Garden	23
7.2 Samples for Commercial Production	26
8. Magnesium	29
8.1 Samples for Home and Garden	29
8.2 Samples for Commercial Production	30
9. Iron	31
9.1 Samples for Home and Garden	31
9.2 Samples for Commercial Production	32
10. Manganese	33
10.1 Samples for Home and Garden	33
10.2 Samples for Commercial Production	34
11. Zinc	35
11.1 Samples for Home and Garden	35
11.2 Samples for Commercial Production	36
Appendix: Cornell Crop Codes	37

Introduction

Wayne County is located adjacent to Lake Ontario east of Monroe (city of Rochester). It contains 388,480 acres of land area. Approximately 170,000 acres or 43% of the area is used for farm production in any given year. The agriculture in Wayne County is extremely diverse.

The county lies entirely in the Ontario Lake Plains physiographic region. The northern lake plain begins at Lake Ontario, where the elevation is 246 feet above sea level. It increases gradually in elevation to the south, about 600 feet at the Ontario and Seneca County border.

The classic drumlin and drumlin fields are the most conspicuous topography in Wayne County. The drumlins range from 60 feet to 250 feet above the surrounding glacial till plain. The average height above the landscape is 160 feet and the average length is 3500 feet. The drumlins are oriented north-south. The highest is Brantling hill with an elevation of 681 feet.

In the northern third of the county, the streams flow northward directly to Lake Ontario. The rest of the county drains eastward through Ganargua Creek, the Barge Canal and the Clyde River.

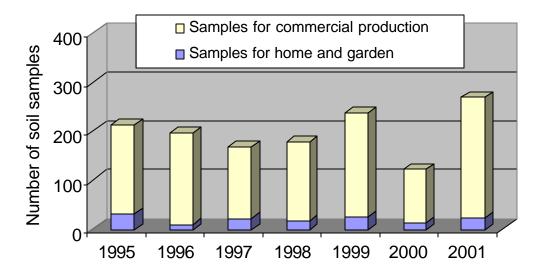
The soils in the north are dominated by glacial till that was greatly modified by glacial outwash and/or glacial lake sediments. These soils were mostly derived from the Sodus shale, Medina sandstone and Queenston shale. The soils in the south are derived from high carbonate materials deposited by glacial advance across the dolomitic limestone escarpment. However, glacial outwash materials and/or lacustrine sediments also modified much of this area. Huge deposits of sand and gravel are found in the old channels where the Great Lakes drainage flowed eastward across the face of the receding glacial ice sheets and intersected with the north flowing rivers that became the Finger Lakes outlets.

Lake Iroquois was a glacial lake that covered the northern third of the county during the glacial recession. The beach ridge from that lake became a prominent feature and was the

base for Indian trails that eventually became the Ridge Road (Rt. 104). Large deltaic deposits formed along this lake and became the fine sand and silt soils.

The glacial recession also left many areas of shallow lakes. These became the extensive wetlands in the county. Many were drained to make organic soils, the largest being the Montezuma mucklands on the eastern border with Cayuga County.

The agriculture of Wayne County is diverse. Tree fruit production is the dominant industry in the northern third of the county. Apples cherries, peaches, pears and plums are the most important generator of farm income. Small fruits such as strawberries, brambles and blueberries are grown for fresh market sales. Next is dairy and associated feed grain production. Third is vegetable production for fresh market and processing (peas, snap beans, sweet corn, kidney beans, cabbage, pumpkins, potatoes). Next are greenhouse, nursery and ornamental production. Large and small-scale livestock producers market poultry (eggs), beef, sheep and hogs. There is also a significant pleasure horse industry in the area. Hay and grain crops not used locally are exported to areas throughout the eastern United States.


Wayne County is home to several of the largest tree fruit production farms in New York. Stored apples are marketed throughout the eastern United States all year-round.

All the above industries rely heavily on soil testing to maintain optimum production while protecting the agricultural environment from nutrient runoff.

By Nathan Herendeen and Beth Claypoole, Cornell Cooperative Extension

1. General Survey Summary

This survey summarizes the soil test results from Wayne County soil samples submitted for analyses to the Cornell Nutrient Analysis Laboratory (CNAL) during 1995-2001. The total number of samples analyzed in these years amounted to 1380. Of these 1380 samples, 1239 (90%) were submitted to obtain fertilizer recommendations for commercial production while 141 samples (10%) were submitted as home and garden samples.

Homeowners								
1995	31							
1996	10							
1997	22							
1998	16							
1999	25							
2000	14							
2001	23							
Total	$1\overline{41}$							

Commercial								
1995	182							
1996	186							
1997	146							
1998	161							
1999	212							
2000	107							
<u>2001</u>	<u>245</u>							
Total	$1\overline{239}$							

Total	
213	
196	
186	
177	
237	
121	
<u>268</u>	
1380	

Many of the home and garden (33%) were submitted to request fertilizer recommendations for lawns while 28% of the samples were submitted to obtain home garden vegetable recommendation. Others requested recommendations for athletic fields, ornamentals, other perennials, fruit trees, roses, etc. People submitting samples for commercial production requested fertilizer recommendations for apples (31%), corn silage or grain production (19%), alfalfa or alfalfa/grass mixtures (6%), potatoes (4%), and sweet corn (4%), while fewer samples were submitted for other crops including small grains and vegetables.

Home and garden samples in Monroe County were silty (22%), silt loams (25%), sandy loams (33%) or sandy (20%) belonging to soil management group 2, 3, 4, and 5, respectively. The table below gives descriptions of each of the soil management groups.

Soil Management Groups for New York

1	Fine-textured soils developed from clayey lake sediments and medium- to fine-textured soils developed from lake sediments.
2	Medium- to fine-textured soils developed from calcareous glacial till and medium-textured to moderately fine-textured soils developed from slightly calcareous glacial till mixed with shale and medium-textured soils developed in recent alluvium.
3	Moderately coarse textured soil developed from glacial outwash and recent alluvium and medium-textured acid soil developed on glacial till.
4	Coarse- to medium-textured soils formed from glacial till or glacial outwash.
5	Coarse- to very coarse-textured soils formed from gravelly or sandy glacial outwash or glacial lake beach ridges or deltas.
6	Organic or muck soils with more than 80% organic matter.

Of the samples submitted for commercial production, 37% belonged to soil management group 2. Sixteen percent were classified as group 3 soils, 30% as group 4 soils and 7% as

group 5 soils. Six percent belonged to soil management group 6 while the remainder of the soils could not be classified with regards to soil management group. The five most common soil series were Ontario (18%), Hilton (11%), Ira (8%), Williamson (8%), and Palmyra (7%). These soils represent 17% (Ontario), 9% (Hilton), 3% Ira, 8% (Williamson), and 7% (Palmyra) of the 392,210 acres of land area in the county.

Organic matter levels, as measured by loss on ignition, ranged from less than 1% to slightly more than 60% for the organic soils in soil management group 6 with median values ranging from 2.1 to 4.8% organic matter for home and garden samples and 2.7 to 3.0% for samples submitted for commercial production. Seventy-three percent of the home and garden samples had between 2 and 5% organic matter with 33% testing between 2 and 2.9% organic matter, 22% between 3.0 and 3.9% organic matter, and 18% between 4.0 and 4.9% organic matter. A little over 15% of the soils submitted for home and garden tested >4.9% in organic matter while 12% had less than 2% organic matter. Of the samples submitted for commercial production, 12% contained between 1-2% organic matter, while 39% had between 2 and 3% organic matter and 25% contained between 3 and 4% organic matter. In total, 77% of the samples had less than 4% organic matter.

Soil pH in water (1:1 extraction ratio) varied from pH 4.3 to 8.2 with the median for home and garden samples ranging from pH 6.5 to pH 7.3 and for samples submitted for commercial production ranging from pH 6.3 to pH 6.6. Of the home and garden samples, 90% had a pH of 6.0 or higher. For the samples submitted for commercial production, this was 76% while 22% tested between pH 5.0 and pH 5.9.

Extractable nutrients such as phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), and zinc (Zn) were measured using the Morgan solution and extraction method (Morgan, 1941). This solution contains sodium acetate buffered at a pH of 4.8.

Soil test P levels of <1 lb P/acre are classified as very low. Between 1-3 lbs P/acre is low. Medium is between 4-8 lbs P/acre. High testing soils have P levels between 9 and 39 lbs P/acre and soils with >39 lbs P/acre are classified as very high. Of the home and garden samples, 9% tested low, 25% tested medium, 35% tested high and 31% tested very high. This meant that 66% tested high or very high in P. Fourteen percent of the samples

submitted for commercial production tested very high in P. Twenty-five percent were low in P, another 25% tested medium for P while 36% of the submitted samples were classified as high in soil test P. This means that 50% tested high or very high in P. There were no clear trends in P levels over the 7 years.

Classifications for potassium depend on soil management group. The fine-textured soils of soil management group 1 have a greater K supplying capacity than the coarse textured sandy soils (soil management group 5). Classification for each of the management groups in the above table represent very low, low, medium, high and very high. So for example for soil management group 5 and 6, <60 lbs K/acre neans the soil is very low in K, between 60 and 114 lbs K/acre is low, 115-164 lbs K/acre is medium, 165-269 lbs K/acre is high and >269 lbs K/acre is classified as very high (see the table below).

Potassium classifications depend on soil test K levels and soil management group.

Soil Management Group	Potassiu	Potassium Soil Test Value (Morgan extraction in lbs K/acre)								
	Very low	Low	Medium	High	Very High					
1 2 3 4 5 and 6	<35 <40 <45 <55 <60	35-64 40-69 45-79 55-99 60-114	65-94 70-99 80-119 100-149 115-164	95-149 100-164 120-199 150-239 165-269	>149 >164 >199 >239 >269					

Of the home and garden samples, 19% were classified as very low or low in potassium. Thirteen percent tested medium, 26% high and 41% very high. For samples submitted for commercial production, 2% tested very low in K, 10% tested low, 17% tested medium, 28% tested high and 39% tested very high in potassium with the remainder being of unknown K classification. As with phosphorus, there were no trends over the 7 years of soil sampling.

Soils test very low for magnesium if Morgan extractable Mg is less than 20 lbs Mg/acre. Low testing soils have 20-65 lbs Morgan Mg per acre. Soils with 66-100 lbs Mg/acre test

medium for magnesium. High testing soils have 101-199 lbs Mg/acre while soils with more than 200 lbs Mg/acre in the Morgan extraction are classified as very high in Mg. Magnesium levels ranged from 16 to over 7,000 lbs Mg/acre (Morgan extraction). There were only two samples that tested very low in Mg. Most soils tested high or very high for Mg (98% of the homeowner soils and 95% of the soils of the commercial growers). No more than 2% of the homeowner soils and 5% of the commercial growers' soil tested low or medium in Mg. Thus, magnesium deficiency is not likely to occur in Wayne County provided the soil pH is maintained in the desirable range.

Soils with more than 50 lbs Morgan extractable Fe per acre test excessive for Fe. Anything lower than 50 lbs Fe/acre is considered normal. Iron levels fell for 97% in the normal range with 4 of the home and garden samples and 3% of the samples for commercial production testing excessive for Fe. Similarly, most soils (96%) for both groups tested normal for manganese. Soils with more than 100 lbs Morgan extractable Mn per acre are classified as excessive in Mn. Anything less than 100 lbs Mn per acre is classified as normal. Soils with less than 0.5 lb zinc per acre in the Morgan extraction are classified as low in Zn. Medium testing soils have between 0.5 and 1 lb of Morgan extractable Zn per acre. If more than 1 lb of Zn/acre is extracted with the Morgan solution, the soil tests high in Zn. For the home and garden samples, 81% tested high for zinc while 16% tested medium and 3% were low in zinc. Of the samples for commercial production, 4% tested low in zinc, 24% tested medium while 72% were high in zinc.

In the following sections, the summary tables for each of the soil fertility indicators described above are given. The appendix contains the crop codes used in section 2.

Reference

Morgan, M.F. 1941. Chemical soil diagnosis by the universal soil testing system.
 Connecticut Agricultural Experimental Station. Bulletin 450.

2. Cropping Systems

2.1 Samples for Home and Garden

Crops for which recommendations are requested by homeowners:

	1995	1996	1997	1998	1999	2000	2001	Total	%
ALG	0	0	0	1	0	1	0	2	1
APR	0	0	0	0	0	0	1	1	1
ATF	0	2	3	1	5	0	0	11	8
BLU	0	0	0	1	0	0	0	1	1
FAR	3	0	0	0	0	0	0	3	2
FLA	0	0	1	1	1	0	4	7	5
GEN	1	0	1	0	0	0	0	2	1
LAW	11	1	5	7	13	6	3	46	33
MVG	9	6	7	3	2	5	7	39	28
OTH	0	0	0	0	1	0	1	2	1
PER	1	0	1	0	0	0	0	2	1
PTO	0	0	0	0	1	0	0	1	1
ROS	0	0	1	1	0	1	2	5	4
RSP	0	0	0	0	0	0	1	1	1
SAG	4	1	2	0	1	0	0	8	6
TRF	2	0	1	1	0	0	2	6	4
Unknown	0	0	0	0	1	1	2	4	3
Total	31	10	22	16	25	14	23	141	100

1	N	\cap	te	C	

See Appendix for Cornell crop codes.

Crops for which recommendations are requested for commercial production:

Current year crop	1995	1996	1997	1998	1999	2000	2001	Total	%
ABE/ABT	2	0	0	0	0	0	0	2	0
AGE/AGT	5	3	7	3	15	2	6	41	3
ALE/ALT	4	7	5	4	3	0	15	38	3
APP	55	76	62	52	77	17	39	378	31
ASP	0	0	0	0	0	1	0	1	0
BCE/BCT	0	0	0	5	0	0	0	5	0
BDR/BND	0	22	1	2	3	0	0	28	2
BGE/BGT	2	0	0	5	14	0	0	21	2
BLB	0	0	0	0	1	0	0	1	0
BNS	1	1	0	0	0	0	0	2	0
BRP	0	0	0	1	0	0	0	1	0
BTE	0	0	0	0	1	0	2	3	0
BUK	0	0	0	1	1	2	0	4	0
CBP	2	0	3	8	3	0	0	16	1
CBS	1	0	0	0	0	0	0	1	0
CFP	0	0	0	0	1	0	0	1	0
CGE/CGT	0	0	0	2	0	0	0	2	0
CHS	0	2	0	2	0	0	1	6	0
CHT	3	2	5	1	4	5	5	25	2
CLE/CLT	0	0	0	0	1	1	2	4	0
COG/COS	25	25	22	16	27	29	87	231	19
EGG	0	0	1	0	0	0	1	2	0
GPA	2	0	0	0	0	0	0	2	0
GRE/GRT	3	3	0	5	13	6	2	32	3
HRB	0	0	1	0	0	0	0	1	0
IDL	5	0	1	1	9	0	1	17	1
MIX	1	0	0	0	4	10	8	23	2
NUR	0	0	0	2	0	0	0	2	0
OAT	2	0	2	0	6	1	3	14	1
ONS	2	4	2	15	0	0	7	30	2
OTH	1	0	0	6	6	2	1	16	1
PAR	2	2	1	0	2	2	1	10	1
PCH	2	4	2	3	6	1	7	25	2
PEA	8	0	0	0	0	0	0	8	1
PEP	0	2	1	0	1	0	1	5	0

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

Current year crop	1995	1996	1997	1998	1999	2000	2001	Total	%
PIE/PIT	0	0	5	0	0	0	1	6	0
PLE/PLT	1	0	0	0	0	0	3	4	0
PNE/PNT	1	0	1	1	3	1	0	7	1
POT	7	7	4	14	3	0	13	48	4
RSF	0	0	0	0	0	1	0	1	0
RSS	0	1	0	2	0	1	0	4	0
RYC	2	0	1	0	0	0	0	3	0
RYS	0	0	0	0	0	0	1	1	0
SOY	2	0	4	0	0	14	5	25	2
SQW	1	0	0	0	0	1	0	2	0
STS	2	3	1	1	0	2	2	11	1
SUD	0	0	0	0	0	0	2	2	0
SWC	2	14	6	6	2	1	15	46	4
TME	0	0	0	0	0	0	1	1	0
TOM	0	0	0	0	0	0	1	1	0
TRE/TRT	24	3	4	2	6	2	0	41	3
WHS	1	0	1	0	0	0	0	2	0
WHT	8	5	0	1	0	1	5	20	2
Unknown	2	0	3	0	0	4	7	16	1
Total	182	186	146	161	212	107	245	1239	100

Notes:

See Appendix for Cornell crop codes.

3. Soil Types

3.1 Samples for Home and Garden

Soil types (soil management groups) for home and garden samples:

	1995	1996	1997	1998	1999	2000	2001	Total
SMG 1 (clayey)	0	0	0	0	0	0	0	0
SMG 2 (silty)	7	3	6	5	3	2	5	31
SMG 3 (silt loam)	8	0	4	6	7	3	7	35
SMG 4 (sandy loam)	8	3	8	5	11	6	6	47
SMG 5 (sandy)	8	4	4	0	4	3	5	28
SMG 6 (mucky)	0	0	0	0	0	0	0	0
Total	31	10	22	16	25	14	23	141

Soil series for samples submitted for commercial production:

	Impres	Buommee	101 00		Produc				
Name	SMG	1995	1996	1997	1998	1999	2000	2001	Total
Alton	5	4	4	5	3	6	8	3	33
Appleton	2	4	7	0	0	3	2	3	19
Bombay	4	11	1	9	8	4	1	5	39
Canandaigua	3	6	1	1	2	2	3	2	17
Carlisle	6	10	10	4	10	4	0	18	56
Cazenovia	2	1	5	0	0	4	0	5	15
Collamer	3	2	2	0	2	1	2	0	9
Colonie	5	3	6	3	0	2	0	1	15
Dunkirk	3	0	0	0	1	2	0	0	3
Edwards	6	0	0	0	1	0	0	0	1
Elnora	5	3	7	3	5	3	3	0	24
Fredon	4	0	0	0	0	1	0	0	1
Hilton	2	11	19	12	11	36	17	33	139
Ira	4	9	28	15	8	30	7	4	101
Lairdsville	2	0	1	0	0	0	0	3	4
Lamson	4	0	0	0	0	0	0	1	1
Lockport	2	16	3	7	0	2	2	5	35
Madalin	1	0	0	1	0	2	0	0	3
Madrid	4	13	12	10	4	1	1	9	50
Martisco	6	1	0	0	0	1	0	0	2
Massena	4	1	2	4	0	0	0	1	8
Minoa	4	2	2	0	6	3	5	1	19
Muck	6	0	1	0	18	0	0	0	19
Newstead	4	0	0	0	0	2	1	0	3
Niagara	3	2	2	0	2	0	0	0	6
Oakville	5	0	1	0	2	2	4	2	11
Ontario	2	40	17	14	24	26	21	77	219
Ovid	2	0	2	0	0	1	0	0	3
Palmyra	3	18	6	11	23	9	4	21	92
Phelps	3	4	9	7	5	5	5	10	45
Rhinebeck	2	0	4	1	9	6	0	0	20
Sodus	4	10	9	11	3	13	3	2	51
Teel	2	1	0	0	0	0	0	1	2
Wallington	3	1	4	6	2	3	3	3	22
Wayland	2	1	0	0	0	0	2	1	4
Williamson	4	7	14	18	7	17	11	21	95

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

Name	SMG	1995	1996	1997	1998	1999	2000	2001	Total
Unknown	-	1	7	4	5	21	2	13	53
Total	_	182	186	146	161	212	107	245	1239

4. Organic Matter

4.1 Samples for Home and Garden

Number of home and garden samples within each % organic matter range:

	<1%	1.0- 1.9	2.0- 2.9	3.0- 3.9	4.0- 4.9	5.0- 5.9	6.0- 6.9	>6.9	Total
1995	0	2	7	12	5	2	1	2	31
1996	0	1	0	2	4	3	0	0	10
1997	2	1	8	5	4	0	0	2	22
1998	0	0	8	2	3	1	0	2	16
1999	0	4	12	3	5	0	0	1	25
2000	0	7	4	2	1	0	0	0	14
2001	0	0	7	5	3	1	0	7	23
Total	2	15	46	31	25	7	1	14	141

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	1.5	1.5	0.9	2.0	1.7	1.0	2.0	
Highest:	11.1	5.6	8.9	8.7	8.1	4.5	10.5	
Mean:	3.9	4.4	3.4	3.9	3.0	2.3	4.8	
Median:	3.5	4.8	3.0	3.1	2.3	2.1	3.7	

Percent of home and garden samples within each % organic matter range:

	<1%	1.0- 1.9	2.0- 2.9	3.0- 3.9	4.0- 4.9	5.0- 5.9	6.0- 6.9	>6.9	Total
1995	0	6	23	39	16	6	3	6	100
1996	0	10	0	20	40	30	0	0	100
1997	9	5	36	23	18	0	0	9	100
1998	0	0	50	13	19	6	0	13	100
1999	0	16	48	12	20	0	0	4	100
2000	0	50	29	14	7	0	0	0	100
2001	0	0	30	22	13	4	0	30	100
Total	1	11	33	22	18	5	1	10	100

Number of samples for commercial production within each % organic matter range:

	<1%	1.0- 1.9	2.0- 2.9	3.0- 3.9	4.0- 4.9	5.0- 5.9	6.0- 6.9	>6.9	Total
1995	2	20	67	58	20	4	0	11	182
1996	1	18	74	53	19	9	1	11	186
1997	1	27	53	33	19	6	1	6	146
1998	1	14	62	37	11	5	0	31	161
1999	4	25	72	52	30	13	8	8	212
2000	1	14	43	32	11	3	2	1	107
2001	2	36	110	47	20	2	3	25	245
Total	12	154	481	312	130	42	15	93	1293

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	0.7	0.9	0.7	0.8	0.4	0.9	0.8	
Highest:	57.3	57.9	58.7	63.8	56.0	7.7	59.6	
Mean:	5.8	5.6	4.1	10.8	4.2	3.0	7.3	
Median:	3.0	3.0	2.8	3.0	3.0	2.9	2.7	

Percent of samples for commercial production within each % organic matter range:

	<1%	1.0- 1.9	2.0- 2.9	3.0- 3.9	4.0- 4.9	5.0- 5.9	6.0- 6.9	>6.9	Total
1995	1	11	37	32	11	2	0	6	100
1996	1	10	40	28	10	5	1	6	100
1997	1	18	36	23	13	4	1	4	100
1998	1	9	39	23	7	3	0	19	100
1999	2	12	34	25	14	6	4	4	100
2000	1	13	40	30	10	3	2	1	100
2001	1	15	45	19	8	1	1	10	100
Total	1	12	39	25	10	3	1	8	100

5. pH

5.1 Samples for Home and Garden

Number of home and garden samples within each pH range:

	<4.5	4.5- 4.9	5.0- 5.4	5.5- 5.9	6.0- 6.4	6.5- 6.9	7.0- 7.4	7.5- 7.9	8.0- 8.4	>8.4	Total
1995	0	0	3	0	3	7	5	12	1	0	31
1996	0	0	0	1	1	2	4	2	0	0	10
1997	0	0	2	2	1	5	9	1	2	0	22
1998	0	0	1	2	4	5	2	2	0	0	16
1999	0	0	0	0	4	4	8	8	1	0	25
2000	0	0	0	0	4	3	2	2	3	0	14
2001	0	0	1	2	5	6	8	1	0	0	23
Total	0	0	7	7	22	32	38	28	7	0	141

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	5.1	5.8	5.0	5.0	6.0	6.1	5.2	
Highest:	8.0	7.5	8.1	7.6	8.0	8.2	7.5	
Mean:	-	-	-	-	-	-	-	
Median:	7.1	7.1	7.0	6.5	7.3	6.9	6.8	

Percent of home and garden samples within each pH range:

	<4.5	4.5- 4.9	5.0- 5.4	5.5- 5.9	6.0- 6.4	6.5- 6.9	7.0- 7.4	7.5- 7.9	8.0- 8.4	>8.4	Total
1995	0	0	10	0	10	23	16	39	39	0	100
1996	0	0	0	10	10	20	40	20	20	0	100
1997	0	0	9	9	5	23	41	5	5	0	100
1998	0	0	6	13	25	31	13	13	13	0	100
1999	0	0	0	0	16	16	32	32	32	0	100
2000	0	0	0	0	29	21	14	14	14	0	100
2001	0	0	4	9	22	26	35	35	4	0	100
Total	0	0	5	5	16	23	27	20	5	0	100

Number of samples for commercial production within each pH range:

	<4.5	4.5- 4.9	5.0- 5.4	5.5- 5.9	6.0- 6.4	6.5- 6.9	7.0- 7.4	7.5- 7.9	8.0- 8.4	>8.4	Total
		4.7	J. 4	3.7	0.4	0.7	7.4	1.7	0.4		
1995	2	8	13	28	34	61	30	6	0	0	182
1996	1	4	13	32	59	59	15	3	0	0	186
1997*	0	1	14	24	46	40	18	2	0	0	145
1998	0	4	16	39	40	44	17	1	0	0	161
1999	0	4	15	35	47	46	49	15	1	0	212
2000	0	1	2	13	26	27	27	11	0	0	107
2001	3	5	6	29	46	76	61	18	0	1	245
Total	6	27	79	200	298	353	217	56	1	1	1238

^{*} One sample was not analyzed for pH in 1997.

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	4.3	4.4	4.7	4.6	4.7	4.9	4.4	
Highest:	7.7	7.6	7.7	7.5	8.1	7.8	9.2	
Mean:	-	-	-	-	-	-	-	
Median:	6.5	6.3	6.3	6.3	6.5	6.6	6.6	

Percent of samples for commercial production within each pH range:

	<4.5	4.5- 4.9	5.0- 5.4	5.5- 5.9	6.0- 6.4	6.5- 6.9	7.0- 7.4	7.5- 7.9	8.0- 8.4	>8.4	Total
1995	1	4	7	15	19	34	16	3	0	0	100
1996	1	2	7	17	32	32	8	2	0	0	100
1997	0	1	10	17	32	28	12	1	0	0	100
1998	0	2	10	24	25	27	11	1	0	0	100
1999	0	2	7	17	22	22	23	7	0	0	100
2000	0	1	2	12	24	25	25	10	0	0	100
2001	1	2	2	12	19	31	25	7	0	0	100
Total	0	2	6	16	24	29	18	5	0	0	100

6. Phosphorus

6.1 Samples for Home and Garden

Number of home and garden samples within each range Morgan extractable P range (lbs/acre Morgan P):

	<1	1-3	4-8	9-39	40-	61-	81-	101-	151-	>200	Total
					60	80	100	150	200		
	VL	L	M	Н	VH	VH	VH	VH	VH	VH	
1995	0	5	5	15	2	1	0	2	1	0	31
1996	0	0	2	3	1	1	2	0	0	1	10
1997	0	4	4	6	4	0	1	1	1	1	22
1998	0	0	4	7	1	1	1	1	1	0	16
1999	0	0	8	13	3	0	0	0	0	1	25
2000	0	1	8	3	0	1	0	1	0	0	14
2001	0	2	4	2	2	2	1	1	4	5	23
Total	0	12	35	49	13	6	5	6	7	8	141

VL = very low, L = low, M = medium, H = high, VH = very high.

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	1	4	3	4	4	3	1	
Highest:	170	305	243	175	309	102	455	
Mean:	29	70	46	42	29	20	123	
Median:	15	42	19	16	13	7	71	

Percent of home and garden samples within each Morgan extractable phosphorus range:

	<1	1-3	4-8	9-39	40-	61-	81-	101-	151-	>200	Total
	X 77	T	3.6	77	60	80	100	150	200	X 77 T	
	VL	L	M	Н	VH	VH	VH	VH	VH	VH	
1995	0	16	16	48	6	3	0	6	3	0	100
1996	0	0	20	30	10	10	20	0	0	10	100
1997	0	18	18	27	18	0	5	5	5	5	100
1998	0	0	25	44	6	6	6	6	6	0	100
1999	0	0	32	52	12	0	0	0	0	4	100
2000	0	7	57	21	0	7	0	7	0	0	100
2001	0	9	17	9	9	9	4	4	17	22	100
Total	0	9	25	35	9	4	4	4	5	6	100

VL = very low, L = low, M = medium, H = high, VH = very high.

Number of samples submitted for commercial production within each Morgan extractable phosphorus (lbs P/acre) range:

	<1	1-3	4-8	9-39	40- 60	61- 80	81- 100	101- 150	151- 200	>200	Total
	VL	L	M	Н	VH	VH	VH	VH	VH	VH	
1995	0	53	44	70	2	1	1	2	2	7	182
1996	0	48	47	69	7	2	3	5	4	1	186
1997	0	37	33	61	9	0	0	2	1	3	146
1998	0	38	39	49	5	1	1	5	11	12	161
1999	0	65	57	54	5	6	5	5	5	10	212
2000	0	34	29	31	5	1	1	4	0	2	107
2001	0	33	55	108	8	9	6	12	6	8	245
Total	0	308	304	442	41	20	17	35	29	43	1239

VL = very low, L = low, M = medium, H = high, VH = very high.

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	1	1	1	1	1	1	1	
Highest:	324	215	314	412	344	441	835	
Mean:	24	21	22	45	31	22	43	
Median:	8	8	9	9	7	7	13	

Percent of samples submitted for commercial production within each Morgan P range:

	<1	1-3	4-8	9-39	40- 60	61- 80	81- 100	101- 150	151- 200	>200	Total
	VL	L	M	Н	VH	VH	VH	VH	VH	VH	
1995	0	29	24	38	1	1	1	1	1	4	100
1996	0	26	25	37	4	1	2	3	2	1	100
1997	0	25	23	42	6	0	0	1	1	2	100
1998	0	24	24	30	3	1	1	3	7	7	100
1999	0	31	27	25	2	3	2	2	2	5	100
2000	0	32	27	29	5	1	1	4	0	2	100
2001	0	13	22	44	3	4	2	5	2	3	100
Total	0	25	25	36	3	2	1	3	2	3	100

VL = very low, L = low, M = medium, H = high, VH = very high.

7. Potassium

7.1 Samples for Home and Garden

Number of home and garden samples within each K range (lbs K/acre Morgan extraction):

Soil Management Group 1											
	<35	35-64	65-94	95-149	>149	Total					
	Very Low	Low	Medium	High	Very High						
1995	0	0	0	0	0	0					
1996	0	0	0	0	0	0					
1997	0	0	0	0	0	0					
1998	0	0	0	0	0	0					
1999	0	0	0	0	0	0					
2000	0	0	0	0	0	0					
2001	0	0	0	0	0	0					
Total (#)	0	0	0	0	0	0					
Total (%)	-	-	-	-	-	-					
		Soil M	Ianagement C	Group 2							
	<40	40-69	70-99	100-164	>164	Total					
	Very Low	Low	Medium	High	Very High						
1995	0	0	0	2	5	7					
1996	0	0	0	1	2	3					
1997	1	1	0	1	3	6					
1998	0	0	0	2	3	5					
1999	0	0	0	1	2	3					
2000	0	0	1	1	0	2					
2001	0	0	0	2	3	5					
Total (#)	1	1	1	10	18	31					
Total (%)	3	3	3	32	58	100					
		Soil M	Ianagement C	Group 3							
	<45	45-79	80-119	120-199	>199	Total					
	Very Low	Low	Medium	High	Very High						
1995	0	2	4	2	0	8					
1996	0	0	0	0	0	0					
1997	0	2	0	1	1	4					
1998	0	2	0	1	3	6					
1999	0	1	0	2	4	7					
2000	0	1	0	1	1	3					
2001	0	1	0	1	5	7					
Total (#)	0	9	4	8	14	35					
Total (%)	0	26	11	23	40	100					

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

		Soil M	Ianagement C	Group 4		
	<55	55-99	100-149	150-239	>239	Total
	Very	Low	Medium	High	Very	
	Low				High	
1995	0	0	1	4	3	8
1996	0	0	2	0	1	3
1997	1	1	0	3	3	8
1998	0	0	2	1	2	5
1999	0	4	2	4	1	11
2000	0	3	2	0	1	6
2001	0	1	0	1	4	6
Total (#)	1	9	9	13	15	47
Total (%)	2	19	19	28	32	100
			Ianagement (
	<60	60-114	115-164	165-269	>269	Total
	Very	Low	Medium	High	Very	
	Low				High	
1995	0	1	2	2	3	8
1996	0	0	0	1	3	4
1997	0	2	0	1	1	4
1998	0	0	0	0	0	0
1999	0	3	0	1	0	4
2000	0	0	2	1	0	3
2001	0	0	1	0	4	5
Total (#)	0	6	5	6	11	28
Total (%)	0	21	18	21	39	100
			Ianagement C			
	<60	60-114	115-164	165-269	>269	Total
	Very	Low	Medium	High	Very	
	Low				High	
1995	0	0	0	0	0	0
1996	0	0	0	0	0	0
1997	0	0	0	0	0	0
1998	0	0	0	0	0	0
1999	0	0	0	0	0	0
2000	0	0	0	0	0	0
2001	0	0	0	0	0	0
Total (#)	0	0	0	0	0	0
Total (%)	_	-	-	-	-	-

Number of home and garden samples within each potassium classification:

Summary (#)	Very Low	Low	Medium	High	Very High	Total
1995	0	3	7	10	11	31
1996	0	0	2	2	6	10
1997	2	6	0	6	8	22
1998	0	2	2	4	8	16
1999	0	8	2	8	7	25
2000	0	4	5	3	2	14
2001	0	2	1	4	16	23
Total #	2	25	19	37	58	141

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	56	103	32	60	49	47	67	
Highest:	451	751	1016	859	522	428	1742	
Mean:	195	290	216	240	170	157	394	
Median:	201	245	171	173	158	139	358	

Percent of samples submitted for home and garden within each potassium classification.

Summary (%)	Very Low	Low	Medium	High	Very High	Total
1995	0	10	23	32	35	100
1996	0	0	20	20	60	100
1997	9	27	0	27	36	100
1998	0	13	13	25	50	100
1999	0	32	8	32	28	100
2000	0	29	36	21	14	100
2001	0	9	4	17	70	100
Grand Total	1	18	13	26	41	100

Number of samples submitted for commercial production within each potassium (lbs K/acre Morgan extraction) range:

		Soil M	Ianagement C	Group 1		
	<35	35-64	65-94	95-149	>149	Total
	Very Low	Low	Medium	High	Very High	
1995	0	0	0	0	0	0
1996	0	0	0	0	0	0
1997	0	0	0	0	1	1
1998	0	0	0	0	0	0
1999	0	0	0	1	1	2
2000	0	0	0	0	0	0
2001	0	0	0	0	0	0
Total (#)	0	0	0	1	2	3
Total (%)	0	0	0	33	67	100
		Soil M	Ianagement C	Group 2		
	<40	40-69	70-99	100-164	>164	Total
	Very Low	Low	Medium	High	Very High	
1995	0	4	6	27	37	74
1996	0	2	7	23	26	58
1997	1	5	11	7	10	34
1998	0	0	5	17	22	44
1999	0	11	5	17	45	78
2000	0	5	12	14	13	44
2001	2	9	21	36	60	128
Total (#)	3	36	67	141	213	460
Total (%)	1	8	15	31	46	100
		Soil M	Ianagement C	Group 3		
	<45	45-79	80-119	120-199	>199	Total
	Very Low	Low	Medium	High	Very High	
1995	0	1	4	13	15	33
1996	0	0	2	17	5	24
1997	3	3	4	12	3	25
1998	0	0	2	14	21	37
1999	0	1	4	5	12	22
2000	1	3	4	4	5	17
2001	1	4	7	12	12	36
Total (#)	5	12	27	77	73	194
Total (%)	3	6	14	40	38	100

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

		Soil N	Ianagement (Group A		
	<55	55-99	100-149	150-239	>239	Total
	Very	Low	Medium	High	Very	10141
	Low	Low	Ivicatanii	IIIgii	High	
1995	0	10	18	15	10	53
1996	2	11	18	21	16	68
1997	1	14	12	18	22	67
1998	0	5	11	10	10	36
1999	1	11	15	13	31	71
2000	2	4	8	8	7	29
2001	2	8	9	16	9	44
Total (#)	8	63	91	101	105	368
Total (%)	2	17	25	27	29	100
		,	Ianagement (260	T . 1
	<60	60-114	115-164	165-269	>269	Total
	Very	Low	Medium	High	Very	
1005	Low	1	2	1	High	10
1995	$\frac{1}{2}$	1	2	1	5	10
1996		4	1	5	6	18
1997	1	1	4	5	0	11
1998	1	3	3	1	2	10
1999	0	1	5	6	1	13
2000	0	2	3 2	0	<u>6</u> 3	15
2001				21		6
Total (#)	6 7	13 16	20	25	23 28	83 100
Total (%)	1				28	100
	<60	60-114	Ianagement C	165-269	>269	Total
		Low	Medium			10141
	Very Low	LOW	IVICUIUIII	High	Very High	
1995	0	1	0	0	10	11
1996	0	0	0	2	9	11
1997	0	0	0	0	4	4
1998	0	0	0	3	26	29
1999	0	0	0	1	4	5
2000	0	0	0	0	0	0
2001	1	1	1	1	14	18
Total (#)	1	2	1	7	67	78
- Jun (11)			1 *	I '	0,	, ,

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

Number of samples submitted for commercial production within each potassium classification.

Summary (#)	Very Low	Low	Medium	High	Very High	Un- known	Total
1995	1	17	30	56	77	1	182
1996	4	17	28	68	62	7	186
1997	6	23	31	42	40	4	146
1998	1	8	21	45	81	5	161
1999	1	24	29	43	94	21	212
2000	4	14	27	29	31	2	107
2001	6	23	40	65	98	13	245
Grand Total	23	126	206	348	483	53	1239

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	32	32	33	56	41	18	28	
Highest:	1841	948	1914	1226	1659	1147	28539	
Mean:	266	219	205	277	295	192	407	
Median:	166	169	152	206	212	136	165	

Percent of samples submitted for commercial production within each potassium classification.

% summary	Very Low	Low	Medium	High	Very High	Un- known	Total
1995	1	9	16	31	42	1	100
1996	2	9	15	37	33	4	100
1997	4	16	21	29	27	3	100
1998	1	5	13	28	50	3	100
1999	0	11	14	20	44	10	100
2000	4	13	25	27	29	2	100
2001	2	9	16	27	40	5	100
Grand Total	2	10	17	28	39	4	100

8. Magnesium

8.1 Samples for Home and Garden

Number of home and garden samples within each Mg range (lbs Morgan Mg/acre):

	<u> </u>			<i>U U \</i>	<u> </u>	, ,
	<20	20-65	66-100	101-199	>199	Total
	Very Low	Low	Medium	High	Very High	
1995	0	0	1	3	27	31
1996	0	0	0	0	10	10
1997	0	0	1	3	18	22
1998	0	1	0	1	14	16
1999	0	0	0	1	24	25
2000	0	0	0	1	13	14
2001	0	0	0	2	21	23
Total	0	1	2	11	127	141

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	71	205	95	38	169	126	156	
Highest:	1344	854	1541	1588	1786	812	1341	
Mean:	512	564	486	476	525	430	531	
Median:	488	619	459	396	516	420	491	

Percent of home and garden samples within each Mg range (lbs Morgan Mg/acre):

	<20	20-65	66-100	101-199	>199	Total
	Very	Low	Medium	High	Very	
	Low				High	
1995	0	0	3	10	97	100
1996	0	0	0	0	100	100
1997	0	0	5	14	82	100
1998	0	6	0	6	88	100
1999	0	0	0	4	96	100
2000	0	0	0	7	93	100
2001	0	0	0	9	91	100
Total	0	1	1	8	90	100

Number of samples submitted for commercial production within each Mg range (lbs Mg/acre Morgan extraction):

	<20	20-65	66-100	101-199	>199	Total
	Very Low	Low	Medium	High	Very High	
1995	2	6	6	22	146	182
1996	0	2	3	20	161	186
1997	0	0	3	21	122	146
1998	0	6	7	14	134	161
1999	0	5	11	23	173	212
2000	0	3	1	28	75	107
2001	0	5	3	30	207	245
Total	2	27	34	158	1018	1239

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	16	36	69	47	42	28	42	
Highest:	2683	2313	3409	2887	2188	1023	7342	
Mean:	495	473	454	604	475	362	551	
Median:	400	397	367	467	364	307	431	

Percent of samples submitted for commercial production within each magnesium range (lbs Mg/acre Morgan extraction):

	<20	20-65	66-100	101-199	>199	Total
	Very	Low	Medium	High	Very	
	Low				High	
1995	1	3	3	12	80	100
1996	0	1	2	11	87	100
1997	0	0	2	14	84	100
1998	0	4	4	9	83	100
1999	0	2	5	11	82	100
2000	0	3	1	26	70	100
2001	0	2	1	12	84	100
Total	0	2	3	13	82	100

9. Iron

9.1 Samples for Home and Garden

Iron (lbs Fe/acre Morgan extraction) in samples for home and garden:

Total number of samples:

0-49	>49	Total
Normal	Excessive	
29	2	31
10	0	10
22	0	22
16	0	16
24	1	25
13	1	14
23	0	23
137	4	141
	Normal 29 10 22 16 24 13 23	Normal Excessive 29 2 10 0 22 0 16 0 24 1 13 1 23 0

Percentages:

0-49	>49	Total
Normal	Excessive	
94	6	100
100	0	100
100	0	100
100	0	100
96	4	100
93	7	100
100	0	100
97	3	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	2	3	2	2	1	1	1	
Highest:	66	15	20	36	138	104	19	
Mean:	12	6	6	11	13	12	7	
Median:	6	5	5	9	4	5	5	

Iron (lbs Fe/acre Morgan extraction) in samples submitted for commercial production:

Total number of samples:

1						
0-49	>49	Total				
Normal	Excessive					
176	6	182				
181	5	186				
146	0	146				
150	11	161				
205	7	212				
105	2	107				
239	6	245				
1202	37	1239				
	Normal 176 181 146 150 205 105 239	Normal Excessive 176 6 181 5 146 0 150 11 205 7 105 2 239 6				

0-49	>49	Total
Normal	Excessive	
97	3	100
97	3	100
100	0	100
93	7	100
97	3	100
98	2	100
98	2	100
97	3	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	1	1	1	1	1	1	1	
Highest:	95	141	40	113	99	103	263	
Mean:	11	11	10	13	12	8	8	
Median:	6	7	7	7	6	5	4	

10. Manganese

10.1 Samples for Home and Garden

Manganese (lbs Mn/acre Morgan extraction) in samples for home and garden:

Total number of samples:

	0-99	>99	Total
	Normal	Excessive	
1995	30	1	31
1996	10	0	10
1997	21	1	22
1998	16	0	16
1999	23	2	25
2000	14	0	14
2001	21	2	23
Total	135	6	141

Percentages:

0-99	>99	Total
Normal	Excessive	
97	3	100
100	0	100
95	5	100
100	0	100
92	8	100
100	0	100
91	9	100
96	4	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	9	18	10	15	14	16	12	
Highest:	112	63	105	60	199	84	116	
Mean:	36	38	50	31	46	37	50	
Median:	29	35	52	29	34	33	45	

Manganese (lbs Mn/acre Morgan extraction) in samples for commercial production:

Total number of samples:

	0-99	>99	Total
	Normal	Excessive	
1995	179	3	182
1996	180	6	186
1997	139	7	146
1998	151	10	161
1999	204	8	212
2000	107	0	107
2001	232	13	245

47

1192

Total

Percentages:

0-99	>99	Total
Normal	Excessive	
98	2	100
97	3	100
95	5	100
94	6	100
96	4	100
100	0	100
95	5	100
96	4	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	3	3	2	3	2	2	3	
Highest:	175	250	157	304	243	88	611	
Mean:	31	30	35	38	31	30	42	
Median:	27	22	29	29	24	27	33	

1239

11. Zinc

11.1 Samples for Home and Garden

Zinc (lbs Zn/acre Morgan extraction) in samples for home and garden:

Total number of samples:

	<0.5	0.5-1.0	>1	Total
	Low	Medium	High	
1995	0	3	28	31
1996	0	1	9	10
1997	1	2	19	22
1998	0	3	13	16
1999	2	8	15	25
2000	1	6	7	14
2001	0	0	23	23
Total	Δ	23	114	141

Percentages:

<0.5	0.5-1.0	>1	Total
Low	Medium	High	
0	10	90	100
0	10	90	100
5	9	86	100
0	19	81	100
8	32	60	100
7	43	50	100
0	0	100	100
3	16	81	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	0.6	0.8	0.4	0.9	0.4	0.4	1.4	
Highest:	161.8	14.5	73.4	67.8	18.4	17.2	60.8	
Mean:	13.6	5.2	8.4	7.4	3.1	2.7	14.1	
Median:	4.0	3.7	3.2	1.7	1.2	1.0	7.3	

Zinc (lbs Zn/acre Morgan extraction) in samples for commercial production:

Total number of samples:

Percentages:

	<0.5	0.5-1.0	>1	Total
	Low	Medium	High	
1995	3	44	135	182
1996	7	57	122	186
1997	1	41	104	146
1998	8	34	119	161
1999	18	55	139	212
2000	3	38	66	107
2001	7	33	205	245
Total	47	302	890	1239
•	•	•		

<0.5	0.5-1.0	>1	Total
Low	Medium	High	
2	24	74	100
4	71	66	100
1	28	71	100
5	21	74	100
8	26	66	100
3	36	62	100
3	13	84	100
4	24	72	100

	1995	1996	1997	1998	1999	2000	2001	
Lowest:	0.3	0.3	0.4	0.1	0.1	0.4	0.2	
Highest:	63.8	29.9	17.9	23.9	61.5	26.4	29.7	
Mean:	3.2	3.1	3.0	4.7	4.3	2.7	3.8	
Median:	1.6	1.5	1.6	1.9	1.6	1.2	1.9	

Appendix: Cornell Crop Codes

Crop codes are used in the Cornell Nutrient Analyses Laboratory.

Crop Code	Crop Description
	Alfalfa
ABE	Alfalfa trefoil grass, Establishment
ABT	Alfalfa trefoil grass, Established
AGE	Alfalfa grass, Establishment
AGT	Alfalfa grass, Established
ALE	Alfalfa, Establishment
ALT	Alfalfa, Established
	Birdsfoot
BCE	Birdsfoot trefoil clover, Establishment
BCT	Birdsfoot trefoil clover, Established
BGE	Birdsfoot trefoil grass, Establishment
BGT	Birdsfoot trefoil grass, Established
BSE	Birdsfoot trefoil seed, Establishment
BST	Birdsfoot trefoil seed, Established
BTE	Birdsfoot trefoil, Establishment
BTT	Birdsfoot trefoil, Established
	Barley
BSP	Spring barley
BSS	Spring barley with legumes
BUK	Buckwheat
BWI	Winter barley
BWS	Winter barley with legumes
	Clover
CGE	Clover grass, Establishment
CGT	Clover grass, Established
CLE	Clover, Establishment
CLT	Clover, Established
CSE	Clover seed production, Establishment
CST	Clover seed production, Established

Crop Code	Crop Description
	Corn
COG	Corn grain
COS	Corn silage
	Grasses, pastures, covercrops
GIE	Grasses intensively managed, Establishment
GIT	Grasses intensively managed, Established
GRE	Grasses, Establishment
GRT	Grasses, Established
PGE	Pasture, Establishment
PGT	Pasture improved grasses, Established
PIE	Pasture intensively grazed, Establishment
PIT	Pasture intensively grazed, Established
PLE	Pasture with legumes, Establishment
PLT	Pasture with legumes, Established
PNT	Pasture native grasses
PNE	Pasture native grasses, Established
RYC	Rye cover crop
RYS	Rye seed production
TRP	Triticale peas
) M	Small grains
MIL	Millet
OAS	Oats with legume
OAT	Oats
SOF	Sorghum forage
SOG	Sorghum grain
SOY	Soybeans Southern and a balaid
SSH	Sorghum sudan hybrid
SUD	Sudangrass
WHS	Wheat with legume
WHT	Wheat
	Others
ALG	Azalea
APP	Apples
APR	Apricots

Crop Code Cr	rop Description
ATF	Athletic Field
ASP	Asparagus
BDR/BND	Beans-dry
BLU/BLB	Blueberries
BNS	Beans, Snap
BRP	Brocoli, Transplanted
CBP	Cabbage, Transplanted
CBS	Cabbage, Seeded
CEM	Cemetery
CFP	Cauliflower, Transplanted
CHS	Cherries, Sweet
CHT	Cherries, Tart
EGG	Eggplants
END	Endives
FAR	Fairway
FLA	Flowering Annuals
GPA	Grapes, American
GPF	Grapes, French-American
GPV	Grapes, Vinifera
GRA	Grapes
GEN	Green
HRB	Herbs
IDL	Idle land
LAW	Lawn
LET	Lettuce
MIX/MVG	Mixed vegetables
MML	Muskmelon
NUR	Nursery
ONS	Onion-seeded
OTH	Other
PAR	Pears
PCH	Peaches
PEA	Peas
PEP	Peppers
PER	Perennials
PLM	Plums
POP	Popcorn
PRK	Park
POT/PTO	Potatoes

Ketterings, Q.M., H. Krol, W.S. Reid and N. Herendeen (2004). Wayne County Soil Sample Survey 1995-2001. CSS Extension Bulletin E04-13. 40 pages.

Crop Code	Crop Description
PUM	Pumpkins
ROD	Roadside
ROS	Roses
ROU	Rough
RSF	Raspberries, Fall
RSP	Raspberries (homeowners)
RSS	Raspberries, Summer
SAG	Ornamentals adapted to pH 6.0 to 7.5
SQS	Squash, Summer
SQW	Squash, Winter
STE	Strawberries, Ever
STR	Strawberries (homeowners)
STS	Strawberries, Spring
SUN	Sunflowers
SWC	Sweet corn
TOM	Tomatoes
TME	Tomatoes, Early
TRE	Christmas trees, Established
TRF	Tree fruits
TRT	Christmas trees, Topdressing